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Non-Abelian walls in supersymmetric gauge theories
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The Bogomol’nyi-Prasad-Sommerfield (BPS) multiwall solutions are constructed in supersymmetric
U(N¢) gauge theories in five dimensions with Ng(>N¢) hypermultiplets in the fundamental represen-
tation. Exact solutions are obtained with full generic moduli for infinite gauge coupling and with
partial moduli for finite gauge coupling. The generic wall solutions require nontrivial configurations for
either gauge fields or off diagonal components of adjoint scalars depending on the gauge. Effective
theories of moduli fields are constructed as world volume gauge theories. Nambu-Goldstone and quasi-
Nambu-Goldstone scalars are distinguished and worked out. Total moduli space of the BPS non-Abelian

walls including all topological

sectors is found to be the complex Grassmann manifold

SU(Ng)/[SU(N¢) X SU(Ng — N¢) X U(1)] endowed with a deformed metric.
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L. INTRODUCTION

In constructing unified theories with extra dimensions
[1-3], it is crucial to obtain topological defects and
localization of massless or nearly massless modes on
the defect. Walls in five-dimensional theories are the
simplest of the topological defects leading to the four-
dimensional world volume. In constructing topological
defects, supersymmetric (SUSY) theories are helpful,
since partial preservation of SUSY automatically gives a
solution of equations of motion [4]. These states are
called BPS states. The simplest of these BPS states is
the wall [5,6]. The resulting theory tends to produce an
N =1 SUSY theory on the world volume, which can
provide realistic unified models with the desirable prop-
erties [7]. Although scalars and spinors can be obtained as
localized modes on the wall [8], it has been difficult to
obtain localized massless gauge bosons in five dimen-
sions, in spite of many interesting proposals, especially in
lower dimensions [9-16]. Recently a model of the local-
ized massless gauge bosons on the wall has been obtained
for Abelian gauge theories using SUSY QED interacting
with tensor multiplets [14,15]. Walls in non-Abelian
gauge theories are called non-Abelian walls. They are
expected to help obtaining non-Abelian gauge bosons
localized on the world volume. Moreover, non-Abelian
wall solutions have rich structures and are interesting in
their own right. BPS walls in a non-Abelian SUSY gauge
theories have recently been studied in lower dimensions
in a particular context [16].

The purpose of this paper is to construct BPS walls in
five-dimensional non-Abelian gauge theories with eight
supercharges and to obtain the effective theories of mod-
uli on the four-dimensional world volume. In particular
we study the U(N) gauge theory with Ng(>N_) flavors of
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hypermultiplets in the fundamental representation. To
obtain discrete vacua, we consider nondegenerate masses
for hypermultiplets, and the Fayet-Iliopoulos (FI) pa-
rameter is introduced [17]. By taking the limit of infinite
gauge coupling, we obtain exact BPS multiwall solutions
with generic moduli parameters covering the complete
moduli space. For a restricted class of moduli parameters
called U(1)-factorizable moduli, we also obtain exact
BPS multiwall solutions for certain values of finite gauge
coupling. We find that the total moduli space is a compact
complex manifold, the Grassmann manifold Gy, y. =

SU(NC)XS%%\F’FENC)XU(]) as reported in [18]. Each moduli

parameter provides a massless field for the effective field
theory on the world volume of walls. We find explicitly
Nambu-Goldstone scalars associated with the spontane-
ously broken global symmetry. We also identify those
massless scalars that are not explained by the spontane-
ously broken symmetry and are called quasi-Nambu-
Goldstone scalars. We find it convenient to introduce a
matrix function S(y) as a function of the extra-
dimensional coordinate and constant moduli matrices
H) to describe the solution. The redundancy of the de-
scription is expressed as a global symmetry GL(N¢, C) of
these data (S, H}). This symmetry turns out to be very
useful and eventually be promoted to a local gauge sym-
metry when we consider effective theories on the world
volume of walls." Therefore we call the symmetry the
world volume symmetry. We also obtain a general formula
for the metric in moduli space which gives the effective
theory of moduli fields on the world volume. The formula
can be reduced to an explicit integral representation in the
case of infinite gauge coupling. We also establish a duality
between BPS wall solutions with U(N¢) color and Ng

'Our gauge symmetry on the world volume seems to be
different from that obtained previously for effective theories
of moduli fields using the brane constructions where the U(k)
gauge symmetry emerges for the k solitons [19-21].
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flavor and those with U(Nc = Ng — Nc) color and Np
flavor.

Our solutions and their moduli space are unchanged
under dimensional reduction to two, three, and four
space-time dimensions. In particular, in four space-time
dimensions, there exists a long history for construction of
BPS solitons and their moduli space in the gauge-Higgs
system. A beautiful method for construction of instantons
was given by Atiyah, Hitchin, Drinfeld, and Manin
(ADHM) [22]. It was modified by Nahm to the one for
BPS monopoles [23]. Recently the moduli space for non-
Abelian vortices has been constructed by Hanany and
Tong [21]. However, a systematic method for construction
of walls in non-Abelian gauge theories has not been
obtained although there exist some for walls in Abelian
gauge theories and/or nonlinear sigma models derivable
from Abelian gauge theories [14,24-27]. Our method
presents the last gap for the construction of solitons and
moduli space in the gauge-Higgs system. Our wall moduli
space as well as the moduli space of vortices are con-
structed by the Kahler quotient while moduli spaces of
instantons and monopoles are constructed by the hyper-
Kéhler quotient. One interesting feature for non-Abelian
walls may be that the total moduli space is finite dimen-
sional in contrast to total moduli spaces for other solitons
which are infinite dimensional.

Since we are interested in wall solutions with Poincaré
invariance in the wall world volume, only the extra-
dimensional component W, may be nontrivial for the
gauge field. One can always choose a gauge of the original
local gauge symmetry to eliminate the extra-dimensional
component W, of gauge field in the case of U(1) gauge
theories. Therefore all the explicit wall solutions so far
obtained have vanishing gauge field configurations
[12,14,25]. In the case of the non-Abelian gauge group,
it is usually convenient to eliminate all the vector multi-
plet scalars for generators outside of the Cartan subalge-
bra JH, and all the gauge fields for generators in the
Cartan subalgebra: 3¢ = 0, WIS = 0. We find that
our BPS multiwall solutions for generic moduli have

nontrivial gauge field configurations: W;ﬁ}[ # 0. We
will also give a gauge-invariant description of these non-
trivial vector multiplet configurations and evaluate these
gauge-invariant quantities for explicit examples.

The SUSY vacua in our U(N¢) model are found to be
the color-flavor locking form specified by the nonvanish-
ing flavor A, for each color component r, such as
(A; - - - Ay,) abbreviated as (A). BPS multiwall solutions
interpolate between two SUSY vacua which are specified
by boundary conditions: a SUSY vacuum (A, - - - Ay_) at
y = o0 and another SUSY vacuum (B, ---By.) at y =
—o0. The boundary condition at *oco defines a topological
sector denoted as (A; - - - Ay_) < (B; - - - By.). The total
moduli space is defined by a sum over k of the moduli
spaces of k-walls J\/lva, N but may also be expressed as a
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sum over the topological sectors M;@;ﬁlg ) defined by
boundary conditions at y = *oo:

A)y—(B
GNF»NC - ZM];VPNC - j\/l< > < >
k

Ng,N¢c *

(1.1)

(4)—B)

Among various BPS walls, there are walls interpolating
between two vacua with identical labels except one label
that have adjacent flavors: (A;---Ay.) — (B - By.)
with A; = B;, j # i, and A; + 1 = B;. These walls are
building blocks of multiwalls and are called elementary
walls. We find that a quantum number (4;, A; + 1) can be
ascribed to the elementary wall with A; + 1 = B, and a
matrix algebra can be formulated to describe the non-
Abelian walls. Composite walls made of several elemen-
tary walls can be represented by a product of matrices
corresponding to constituent elementary walls. If the
matrices do not commute, the commutator gives a single
wall made by compressing the two walls. We call such a
wall a compressed wall. This is the situation for Abelian
walls. On the other hand, we can also have commuting
matrices for non-Abelian walls. If the matrices are com-
muting, the two elementary walls are called penetrable,
since the intermediate vacuum changes character while
the constituent walls go through each other maintaining
their identities by changing from one sign of the relative
position to the other sign.

In Sec. II, we introduce our model, work out SUSY
vacua with a convenient diagrammatic representation,
and obtain 1/2 BPS equations. In Sec. ITI, exact solutions
of the BPS equations are obtained both for infinite and for
finite gauge couplings, by introducing moduli matrices
and the world volume symmetry. In Sec. IV, explicit
solutions at infinite coupling are presented for a number
of illustrative examples. In Sec.V, the topology and metric
of the moduli space of the non-Abelian BPS wall solu-
tions are studied. In Sec. VI, we discuss the implications
of our results and future directions of research. A number
of useful details are described in several Appendices.

IL. THE MODEL, SUSY VACUA, AND BPS
EQUATIONS

A. The Model

Since we are interested in theories in five dimensions,
we need eight supercharges. With this minimum number
of supersymmetry (SUSY), simple building blocks are
vector multiplets and hypermultiplets. Wall solutions re-
quire discrete vacua, which can be obtained by consider-
ing U(1) factors besides semisimple gauge group [17]. We
denote the gauge group suffix and flavor group suffix in
our fundamental theory by the uppercase letters G and E
respectively. The U(1); vector multiplet with coupling
constant g, consists of a U(1)g gauge field W9, a real
scalar field 22, a SU(2) triplet of real auxiliary field Y%,
and an SU(2)y doublet of gauginos A, We denote space-
time indices by M, N,--- =0, 1, 2, 3, 4, and SU(2)z
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triplet, doublet indices by q, i respectively. The U(1)g part
of vector multiplets allows us to introduce the FI term
which gives rise to discrete vacua once mass terms for
hypermultiplets are introduced [17].

We also have a non-Abelian vector multiplet for a
semisimple gauge group G with coupling constant g. It
consists of a gauge field W), a scalar 2, auxiliary fields
Y%, and gauginos A/, which are now in the adjoint repre-
sentation of G. We use a matrix-notation for these com-
ponent fields, such as 3 = 3/T,. We denote the Hermitian
generators in the Lie algebra G of the gauge group G as
T' € G[I =1,2,---,dim(G)], which satisfy the follow-
ing normalization condition and commutation relation

Tro(T,T)) = T(R)8,, [T, T)] = if Tk (2.1
where f,,X are the structure constants of the gauge group
G, and T(R) is the normalization constant for the repre-
sentation R. Furthermore, we denote the generators in
the Cartan subalgebra JH of G by a suffix xas 7* € H .
For later convenience, we denote the generator of the U(1)
factor group as T° with the same normalization as the
non-Abelian group generators (2.1). Moreover, we collec-
tively denote generators as 7' with I running over I = 0
for the U(l) and I = 1, - - -, dim(G) for the non-Abelian
group. We also denote gauge couplings as g; [/ =
0,1,-+-,dim(G)], with g; =g for I =1,---,dim(G).
Similarly we also combine the U(1) generator with those
in the Cartan subalgebra to denote diagonal generators:
T* withx =0, 1, - - -, dim(H).

We have hypermultiplets as matter fields, consisting of
SU(2)g doublet of complex scalar quark fields H™,
SU(2)g doublet of auxiliary fields F/4, and Dirac fields

. Color indices r, s, - - - run over 1,2, - - -, R where R
denotes the dimension of the representation of the hyper-
multiplet, whereas A, B, - - = 1,2, - -+, Ng stand for fla-

vor indices. We consider Ng > N¢ to obtain disconnected
SUSY vacua appropriate for constructing walls.

We shall consider a model with minimal kinetic terms
for vector and hypermultiplets. The eight supercharges
allow only a few parameters in our model: gauge cou-
pling constants g, for U(1)g, and g for the non-Abelian
semisimple gauge group G, the masses of Ath hypermul-
tiplet m,, and the FI parameters {“ for the U(1)g vector
multiplet. Then the bosonic part of our Lagrangian reads

1
-Ebosonic = _Z ﬁFII\/IN(W)FIMN(W)
1=0781
1
+ ZF DMEIDMEI - é“ayaO
1=0481

1 . .
+ Z F (YaI)Z 4 (DMHtrA)* M prirA
=0481
— (leA)*[(E _ mA)Z]rSHisA
+ (HirA)*(O.a)ij(Ya)rsHjsA + (F;*A)*F(A

i

2.2)
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where the summation over group indices [ is explicitly
denoted. In the following, however, we will suppress the
summation with the understanding that the sum over
repeated indices I should be done including / = 0, unless
stated otherwise. Summation over repeated indices is also
implied for other indices. The covariant derivatives
are defined as Dy H"™ =[9,,6; + i(Wi)  JH*A[I =
0,1,---,dim(G)], Dy = 9,2 + i[Wy, 2], and field
strength is defined as Fyy =1[Dy, Dyl = dyWy —
InWy + i[Wy, Wy] and our convention of metric is
nyn = diag(+1, —1, =1, =1, —1).

In this paper, we assume nondegenerate mass parame-
ters my, unless stated otherwise. Then the flavor symmetry
reduces to

Gr = U(D)pF ™, (2.3)

where U(1)g corresponding to common phase is gauged
by U(1)g local gauge symmetry. We choose the order of
the mass parameters as my > my . for all A.

B. SUSY Vacua and its Diagrammatic Representation

SUSY vacua can be obtained by requiring vanishing
vacuum energy. Let us first write down equations of
motion for auxiliary fields

YO0 = gL — (A () (T ] @24)
Yl = —HY (@) (T HM, (1#0), 25)
Fra =0, (2.6)

After eliminating auxiliary fields, we obtain the on shell
version of the bosonic part of the Lagrangian

1 1
Liosonic = — — FL (W)FIMN(W) + — D, S DM3!
bosonic 48% MN( ) ( ) zg% M2 E
+ (Dy H"™ ) DMH™ — v, 2.7)

where the scalar potential V is given by

1 . )
V= ng(YaI)Z + (F{A)*F{A + (H’rA)*[(E _ mA)Z]rSHlsA
1

2
= 211880 — (H™)* (o) (T HIA P+ () (2

— my)? ] H5A 2.8)

The vanishing vacuum energy requires both contributions
from vector and hypermultiplets to vanish. Conditions of
vanishing contribution from vector multiplet can be sum-
marized to one equation as

(H"™) () () HI™ = {8y,

[I=01,---,dim(G)] 29)

The SU(2); symmetry allows us to choose the FI pa-
rameters to lie in the third direction without loss of
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generality
¢ =1(0,0,9), >0, (2.10)

Then the SUSY condition (2.9) for the vector multiplets is
reduced to

a=23:
(H'™A)S(T))rH"A — (H*)(T))" s H*A = {8y,
@2.11)
a=12: (H'A)*(T,)" ;H*A = 0, (2.12)
where r,s=12---,R, A=12---,Np, and I =

0,1,2,---,dim(G). Requiring the vanishing contribution
to vacuum energy from hypermultiplets gives the SUSY
condition for hypermultiplets as

dim(G) '
(20T, + Z SIT, — mylg I H*A =0,
=1

(2.13)

for each index A. By local gauge transformations of G, we
can always choose SIEH = 0. To parametrize the re-
maining vector multiplet scalars belonging to the
Cartan subalgebra H , we introduce orthogonal matrices
T, as

(T,),=6"n,(R), for x=0,1,2,...,dim(FH),

(2.14)
where n,, is the U(1),-charge of the scalar carrying the
color index r, and note that n,, have the following prop-

erties due to the traceless condition of 7, and the normal-
ization (2.1)

T(R)

R
no(R) = R Z ny20)r(R) =0,
r=1

r (2.15)
S n (R, (R) = T(R)3,,.
r=1

Rewriting the condition (2.13) with n,,(R), we obtain
dim(H)

Z Exn”(R)}HirA
x=1

30
KJz:R - m") "
dim(H)

:{ XZ:(“) S*n,(R) —

for each index A. In order to have a nonvanishing hyper-
multiplet scalar H"4 with the color r and the flavor A, we
need to require the corresponding coefficient in Eq. (2.16)
to vanish:

mA}H”A =0 (2.16)

dim(H)

), = Z Sn . (R)=m (2.17)
x=0

Let us consider a [dim(Z) + 1]-dimensional space S =
(30, 3x=1 ... Sx=dim(F)) of the vector multiplet scalars.
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The condition (2.17) implies that the region in i for a
nonvanishing hypermultiplet scalar H4 should be con-
tained in a dim(# )-dimensional hyperplane, which con-

tains a point %, = (\/ﬁmA, 0,---,0) and is orthogonal
to the vector 7,.(R) with component (#,), = n,,.
Obviously, two scalars H"4 and H'"® with the same color
index r can be nonvanishing only if m4 = mp. Vacua with
the n nonvanishing scalars should lie in the [dim(F) +

1 — n]-dimensional hyperplane in i These hyperplanes

can easily be visualized diagrammatically in 3, space.
These diagrams are quite useful to understand the struc-
ture of the vacua intuitively, and to construct the domain
walls interpolating between these vacua as we see below.
We shall discuss mainly the cases where there are
nonvanishing scalars carrying flavor A, for the rth color
component, (H"4r # 0). In these cases, Egs. (2.17) and
(2.15) determine the scalar X* in terms of n,,(R) as

1 R
E = T(R) ; nxr(R)mA,'

In particular 3° is given by an average value of the mass
parameters,

(2.18)

0= (2.19)

WZ .

which is independent of gauge choices.

C. SUSY Vacua for U(Nc) Gauge Group with Ny
Flavors

The procedure to solve the SUSY conditions (2.11) and
(2.12) for the vector multiplets depends on details of the
system. In this paper, we mostly consider a simple ex-
ample of the U(1) X G = U(N) gauge group, and Ng
hypermultiplets in the fundamental representation of
U(Nc), for which we choose T(R) = 1/2. We assume
nondegenerate mass parameterszz with the ordering m, >
my 4 for all A as was mentioned below Eq. (2.3).

It is convenient to combine the N hypermultiplets in
the fundamental representation into the following N X
N matrix

Hil 1 Hi12 HilNF
) Hi2! Hi22 H 2Nk
H' = : : (2.20)
HiNcl HiNCZ HiNcNe

In the following, we will denote this matrix as H', while
its A components are denoted as H"4. We also use Ng X

2Almost all of our discussions are also applicable to the
degenerate mass case apart from some subtleties associated
with global symmetry which we hope to return in other
publications.
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Nc matrix H'T whose components are (H't),, = (H)*.
The SUSY condition (2.11) for vector multiplets can be
rewritten in terms of this matrix as

H'H' — H?H*' = 2{T, = cly,, (2.21)
where we rescaled the FI parameter { to define ¢
¢ = {4/2/Ne. (2.22)

Another SUSY condition for vector multiplets, (2.12)
becomes

H?*H't = 0. (2.23)
Since we assume nondegenerate masses for hypermultip-
lets, we find from the conditions (2.16), (2.21), and (2.23)
that only one flavor A = A, can be nonvanishing for each
color component r of hypermultiplet scalars H" with

H'" = \[c84,, H>™ =0, (2.24)
since ¢ = {/2/N¢ > 0 as defined in Eq. (2.10). Here we
used global gauge transformations to eliminate possible
phase factors. This is often called the color-flavor locking

vacuum. The vector multiplet scalars %* is determined in

S as intersection points of Nc hyperplanes defined by
(2.17), as illustrated in Fig. 1

1 1 1
0+_ 3+ 8+...:
\/ZTCE 2> \/52 T
1 1 1
2NC EO _523 + '\/3—28 + o :mAZ’ (2'25)
1 2
0 _ LT —
—ZNCE \/gz my,,

These discrete vacua are equivalently expressed in the
matrix notation as

¥3
< .
N N e N
N s o PN AN /7
NN N 7 AN s
. N , N7 N s
PN N , ‘o’ AN
4 N N 4 7N AN
’ N “e / \ VAN
’ N 4 \ s AN
\\ Ve N .. AN 7 Y
X N7 <7, > N7 s N
\ N S J . ’ N
S 4 /7N Y s
N 4 ° N , ,./
N 4 /N N , N
N4 s N N s N
‘\ // \\ . . N
N N
N /7 AN N 7 AN 7 NI
/ 7/ 7N
RN AN e AN N EOERN ZO
2mjqq 2my -+ 2mi2my 2m;_q
FIG. 1. Diagrammatic representation of vacua for No =2

case. Dashed lines are defined by 3° + 33 = 2m, and X0 —
33 = 2m,. Vacua are given as intersection points of these lines
except for 33 = 0, because of Eq. (2.23).
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3 = diag.(my,, my,, - - -,mANC). (2.26)
We denote a SUSY vacuum specified by a set of non-
vanishing hypermultiplet scalars with the flavor {A,} for
each color component r as

(AjAy - Ay). (2.27)

Since global gauge transformations can exchange flavors
A, and A, for the color component r and s, respectively,
the ordering of the flavors Ay, - - -, ANC does not matter in
considering only vacua: (123) = (213). Thus a number of
SUSY vacua is given by [17]

co Ng!
NeNe ™ N (Ng — No)!

and we usually take A} <A, <--- <Ay

Walls interpolate between two vacua at y = o0 and y =
—o0. These boundary conditions at y = oo define topo-
logical sectors, such as (12) «— (34). (Multi)walls are
classified by the topological sectors. Clearly (12) — (34)
is identical to (12) « (43).

When we consider walls, however, it is often conve-
nient to fix a gauge in presenting solutions. The gauge
transformations allow us to eliminate all the vector mul-
tiplet scalars 37 for generators outside of the Cartan
subalgebra JH{, and all the gauge fields W;EH in the
Cartan subalgebra . In this gauge, gauge fields

Wﬁfﬂ can no longer be eliminated, since gauge is com-
pletely fixed. We shall usually use this gauge

(2.28)

SEH =0, wiEH =0 (2.29)

in this paper unless otherwise stated. If we wish, we can
choose another gauge where the extra dimension compo-
nent W/ of the gauge field vanishes for all the generators.
Then all components of vector multiplet scalars X! in-
cluding those out of Cartan subalgebra become nontri-
vial. In that gauge, our BPS multiwall solutions are
expressed by nontrivial vector multiplet scalars 3/ for
all the generators, instead of gauge fields W;.

When gauge is fixed in any one of these gauge choices,
the ordering of flavors have physical significance, since
changing one side of the boundary condition (y = +0)
while keeping the other side (y = —o0) requires local
gauge transformations which will no longer be allowed.
For example, we denote the wall connecting two vacua
labeled by (12) at y = 400 and (34) at y = —o0 as (12 —
34) in the gauge fixed representation. The wall connecting
vacua (12) and (34) is different from (12) and (43) in the
gauge fixed representation: (12 «— 34) # (12 «— 43).

D. Half BPS Equations for Domain Walls

We assume g, = g in the following. Let us obtain the
BPS equations for domain walls interpolating between
two SUSY vacua. The SUSY transformation laws of fer-
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mions of vector multiplets and hypermultiplets are given
by?

1 , o
8. A = {5 YMNEyn(W) + 7MTDME}8’ +i(Y* o) &/,
(2.30)

et =V2A—iyM Dy H' + (SH' = H'M)}e;j6’ + V2F;¢',
(2.31)

where we use Ng X Np Hermitian mass matrix M defined
by

(MY, = m, 84, (2.32)

To obtain wall solutions, we assume that all fields depend
on the coordinate of only one extra dimension x* which
we denote as y. We also assume the Poincaré invariance
on the four-dimensional world volume of the wall, im-
plying

Fyn(W) =0, W, =0,

(2.33)

where we take x* = (x% x', x2, x3) as four-dimensional

world volume coordinates. Note that W, need not vanish.
We demand that half of supercharges defined by

P.e' =0,  P_&2=0 [y*e'=—i(c?)e]]

(2.34)

to be conserved [14]. By using these wall ansatz (2.33)

and unbroken supercharges (2.34), the transformation

laws (2.30), (2.31) on the background of the 1/2 BPS state

reduce to

8¢ A lpackeround = —i(03) (D3 — Y3)el

bsckgrouna = —i( 1)11( - 2_)_ (2.35)

+i(Y'o! + 1?0?) e/,

5slplbackground = \/z{(0'3)ikDka + (EHI - HiM)}Gijsj
+V2F;€l. (2.36)

Preservation of the half of supercharges requires these
transformations (2.35) and (2.36) to vanish. Using
Egs. (2.4), (2.5), and (2.6), we find the following BPS
equations for domain walls in the matrix notation

2
D3 =7 =S (cly — H'H' + HB2HY), (237)

0=Y!+iy>=—g?H?H', (2.38)

D,H'= -3H'+ H'M,  D,H*>=3H?—- H*M.
(2.39)

*In this paper, our gamma matrices are defined as
Y YN =29V MV =SV AN] P =iyl =
—iy*, el =€, =1,and P. = 1*27' .
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The Bogomol’nyi completion of the energy density of
our system can be performed as

E= %Tr(DyE - Y+ lzTr[(Yl)2 +(r?)?]
8 8

+Tr|D,H' + 3H' — H'M|?
+ Tr|D,H? — SH* + H*M|* + ¢9,TrS
— o {T[(SH' — H'M)H'T

+ (=2H? + H*M)H*']}. (2.40)

Let us consider a configuration approaching to a SUSY
vacuum labeled by (A;A,---Ay,) at the boundary of
positive infinity y= +o0, and to a vacuum
(B1B, - - - By,) at the boundary of negative infinity y =
—o0, If the SUSY condition XH' — H'M = 0 is satisfied
at y = *oo, the second term of the last line of Eq. (2.40)
vanishes. Therefore the minimum energy is achieved by
the configuration satisfying the BPS Egs. (2.37), (2.38),
and (2.39), and the energy (per unit wall world volume)
for the BPS saturated configuration is given by

T, = fﬂo dy€ = [Tr2 )%

Ne Nc
= C(Z my, — Z mBk>. (2.41)
=1 =1

If a wall connects two SUSY vacua with identical labels
except for a single label which are adjacent, such as
<Blr o "Bk»A - I’Bk+2’ o "BNC —

By, +,By, A Biio - -,BNC>, its tension is given by

T8, B A= 1Biis, " Bye —B1. " BiuA By By

= c(my_, — my) > 0. (2.42)

Since the tension depends only on the two labels which
are different in the two vacua, we denote it as Ty j—y).
Note that the tension T, of general BPS multiwalls can be
expressed by a sum of these minimal units. In this sense,
these walls can be thought of building blocks of various
walls. Therefore we call these walls (B, -, By, A —
1, Bk+2! sty BNC «— Bl’ ct ey, Bk,A, Bk+2’ ttty, BNC> as ele-
mentary walls.

For non-BPS walls, we obtain a lower bound for their
tension by

f o Edy>[cTrS — T{(SH' — H'M)H't
+ (=3 H? + H*M)H*}]*.,. (2.43)

ITII. BPS WALL SOLUTIONS

In this section, we construct solutions for BPS
Egs. (2.37), (2.38), and (2.39) and examine their proper-
ties in detail.
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A. The BPS Equations for Arbitrary
Gauge Coupling

It is convenient to introduce an N X N invertible

complex matrix function S(y) defined by

2 +iW, = S‘layS. (3.1)

Note that this differential equation4 determines the func-

tion S(y) with N2 arbitrary complex integration con-

stants, from which the world-volume symmetry emerges

as we see later. Let us change variables from H U H? to
N¢ X Ng matrix functions f!, 2 by using S

H'=S71f1 H?> = stf2 (3.2)

Substituting (3.1), (3.2) to the BPS Eq. (2.39) for H', we

obtain

a,f1=r'm, a,f*=—f*M (3.3)
which can be easily solved as
f!=HleM, f? = H3ie ™ (3.4)

with the N¢ X Np constant complex matrices HJ, H}
as integration constants, which we call moduli
matrices. Therefore H' can be solved completely in terms
of S as

H' = S7'H}e™, H? = STHZe ™My, (3.5)
The definitions (3.1), (3.2) show that a set (S, H}, H3) and
another set (', HY, H3') give the same original fields
3, W, H' provided they are related by

S'=VS,  HY=VH] HY = (V))"'HZ, (3.6)

where V € GL(N, C). This transformation V defines an
equivalence class among sets of the matrix function and
moduli matrices (S, H}, H3) which represents physically
equivalent results. This symmetry comes from the N%
integration constants in solving (3.1), and represents the
redundancy of describing the wall solution in terms of
(S, H}, H3). We call this “world-volume symmetry,”
since this symmetry will eventually be promoted to a
local gauge symmetry in the world volume of walls
when we consider the effective action on the walls. It
will turn out to play an important role to study moduli of
solutions for domain walls.

“In Abelian U(1)g case, a complex function ¢ was used to
solve the BPS equation for walls [14,25]. It is related to S
through S = ¢¥. Our matrix function § is its generalization to
non-Abelian cases.

PHYSICAL REVIEW D 70, 125014 (2004)

Another BPS Eq. (2.38) reduces to the following con-
dition for the moduli matrices
HYHT = 0. (3.7)
With our choice of the direction of the FI parameter
(2.10), H? vanishes in any SUSY vacuum as given in
Eq. (2.24) corresponding to nondegenerate masses, which
we consider here. Thus we expect that the moduli matrix
for domain walls Hj corresponding to the field H? also
vanishes. Consequently the field H> for domain wall
solutions vanishes identically in the extra dimension. In
Appendix C, we prove this expectation with the aid of
Egs. (3.5) and (3.7), by requiring that the scalar fields
H', H? should converge at the boundaries. We also show
that H? can be nonvanishing only as constant vacuum
values fixed by boundary conditions, even in the case
of degenerate mass parameters for hypermultiplets.
Therefore we take

H}=0, (H?> =0), H, = H|. (3.8)

Since the BPS equations for hypermultiplets are solved
by means of the matrix function S as in Eq. (3.5), the
remaining BPS equations for the vector multiplets can be
written in terms of the matrix S and the moduli matrix
H,. Since the matrix function S originates from the vector
multiplet scalars 3 and the fifth component of the gauge
fields W, as in Eq. (3.1), the gauge transformations on the

original fields 3, W,, H', H?

Hl — Hl/ — UHl H2 — H2/ — UH2
3+ iW, =3 +iW, = UE +iW,)UT + Ua,UT,
(3.9)

can be obtained by multiplying a unitary matrix Ut(y)
from the right of S:
utu =1,

S— S = Ssut, (3.10)

without causing any transformations on the moduli ma-
trices H,. Thus we define () out of §

Q = sst, (3.11)

which is invariant under the gauge transformations (3.10)
of the fundamental theory. Note that this () is not invari-
ant under the world-volume symmetry transformations
(3.6):

Q-0 =vavt, (3.12)

Together with the gauge invariant moduli matrix H, the
BPS Eqgs. (2.37) for vector multiplets can be rewritten in
the following gauge invariant form

920 — 8,00719,Q = ¢X(cQ — Hye®™HY), (3.13)

where, we used the following equality
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1
D2 = 5S*'(agﬂ - 9,007 19, Q) (s (3.14)

Needless to say, we can calculate uniquely the N- X N¢
complex matrix S from the Nc X N Hermitian matrix )
with a suitable gauge choice.” Therefore, once a solution
of Q) for Eq. (3.13) with a given moduli matrix H, is
obtained, the matrix S can be determined and then, all the
quantities, %, Wy, H !, and H? are obtained by Egs. (3.1)
and (3.5).

The remaining task for us to obtain the general
solutions of the BPS equations is only to solve
Eq. (3.13) with given boundary conditions.® Since we
are going to impose two boundary conditions at y = oo
and at y = —oo to the second order differential Eq. (3.13),
the number of necessary boundary conditions precisely
matches to obtain the unique solution. From this reason
we expect that the nonlinear differential Eq. (3.13) sup-
plemented by the boundary conditions determines the
solution uniquely with no additional integration con-
stants. Therefore there should be no more moduli parame-
ters in addition to the moduli matrix H,. This point will
become obvious when we consider the case of infinite
coupling in Sec. IIIE For finite coupling, a detailed
analysis of the nonlinear differential equation with
boundary conditions at infinity become rather compli-
cated. However, we have analyzed in detail the almost
analogous nonlinear differential equation in the case of
the Abelian gauge theory at finite gauge coupling in order
to obtain BPS wall solutions [14]. We have worked out
an iterative approximation scheme to solve the non-
linear differential equation, say from y = oo, by impos-
ing the boundary condition, and found that a series
of exponential terms are obtained with just a single
arbitrary parameter to fix the solution. This freedom
of the arbitrary parameter can be used to satisfy the
boundary condition at the other side y = —oo. The
only subtlety lies in the fact that the iterative scheme
does not seem to converge uniformly in y, so that we
need to do sufficiently large numbers of iterations to
obtain a good approximation as we go to smaller and
smaller values of y. For the case of non-Abelian gauge
theories at finite gauge coupling, there is no reason to
believe a behavior different from the Abelian counterpart.
However, it is more desirable to show it rigorously, for
instance by index theorems, one of which was given
for the No =1 case [28]. Thus we believe that we
should consider only the moduli contained in the moduli

>For instance, we can take a gauge choice where S is an upper
(lower) triangular matrix whose diagonal elements are positive
real, then Eq. (3.11) determines the nonvanishing components
of the matrix § straightforwardly from the lower-right (upper-
left) components to the upper-left (lower-right) components.

“We need to translate the boundary conditions for the origi-
nal fields, X, (Wy), and H' to those for ) with a given H, to
solve the Eq. (3.13).

PHYSICAL REVIEW D 70, 125014 (2004)

matrix Hy, in order to discuss the moduli space of domain
walls.”

For an arbitrary gauge coupling g, an arbitrary mass
matrix M, and an arbitrary moduli matrix H,, it seems,
however, quite difficult to solve the nonlinear differential
Eq. (3.13) explicitly. In Sec. III E we consider the case of
the infinite gauge coupling, g> — oo, where exact multi-
wall solutions can be constructed explicitly for generic
moduli and with arbitrary masses for hypermultiplets. In
Sec. III G, we obtain solutions for finite, but particular
gauge couplings and with particular masses for hyper-
multiplets. This class of solution exploits the previously
solved cases with finite gauge coupling for Abelian gauge
theories[14] and covers only restricted subspaces of the
full moduli space.

B. Gauge-Invariant Observables

Here, we give some useful identities to obtain gauge
invariant quantities. It is tedious to calculate the gauge
variant matrix function S from the gauge invariant ma-
trix function ) = SST. However, we can obtain the gauge
invariant quantities without determining the explicit ex-
pression of the gauge variant matrix function S. In almost
all situations, we are interested in gauge invariant infor-
mations which can be obtained from the gauge invariant
matrix (). Thus we only give an explicit form of gauge
invariant quantities without giving the matrix S in most
part of this paper. The Weyl invariants made of the scalar
3, are given by

T = TOQ19,00]  (G19)
where we used
S = Re(S*IayS) = %S*I(ayQ)Q”S. (3.16)

In particular, the Weyl invariant for n = 1

= _ | 2. _ 1
pX \/I\ZTr(E) may[log(detﬂ)], 3.17)

is important to obtain the tension of the walls.
Information of the number of walls and their locations
can be extracted from the profile of the function det(}, as
we explain in Appendix A. The field configurations of the
hypermultiplet scalars H' are conveniently summarized
in the following Ng X Ng matrix

H'TH' = M HI Q7 HoeM. (3.18)

The informations of the gauge field configurations can
also be obtained by using the gauge invariant quantities.

"If we consider degenerate masses for hypermultiplets, we
have cases with nonvanishing H2, which are determined by
boundary conditions without giving any additional moduli as
explained in Appendix C.
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In the case of N = 2, for instance, it is useful to consider
the following gauge invariant quantity

1
1%

where the quantities in the right-hand side of the above
formula are given by

Igauge =

[ID, 2 — (8,I2)%], (3.19)

3
I3 =D (3 = 2T{(2)*] - [Te(3)
=1

2 detQ) detQ)
(3.20)

Here we used a property of a 2 X 2 matrix X: Tr(X?) =
[Tr(X)]* — 2det(X), and

= [Tr(D)P — 4 dets = ((” detﬂ)Z _ detd,

3
D3P = 3 (D,
I=1

_[, d,, detQ)\ 2
| (3qem)
_det(03Q —9,00719,0)
detQ) ’
The gauge-invariant (3.19) is ill-defined at |2| = 0. If we
choose a gauge fixing of vanishing fifth component gauge
field Wy, = 0, the quantity (3.19) measures a twist of the
trajectory for the wall solution in the space of the adjoint
scalar (2!, 22, 33) without changing the singlet scalar >°
of the U(1) vector multiplet. If we choose another gauge

(3.21)

of 3! = 32 = 0 and W; = 0 instead, we obtain Iy, as
the sum of squares of the gauge fields
Lyuge = (W12 + (WP (3.22)

Note that I, is generically nontrivial around the re-
gions where the walls have nontrivial profile as we will
explain later. Regions far away from the walls are essen-
tially close to vacua. In these regions, all fields W, and S,
vanish or approach to a constant, resulting in /g,,gc = 0. In
Sec. III G, we will define the notion of a ‘““factorizable
moduli”’ for models with the infinite gauge coupling. We
will find that the above gauge invariant quantity /. for
walls with the factorizable moduli vanishes except at 2, =

0 where I,,,,. becomes ill-defined. |

S *
(e}

Hy=+Jc

PHYSICAL REVIEW D 70, 125014 (2004)
C. General Properties of the Moduli Matrix H,

From the arguments of previous section, we should
consider only the moduli contained in the moduli matrix
H,. Therefore the number of complex moduli parameters
is given by

dim ¢ My, . = NeNg — N& = NcNe, (3.23)
where we have denoted the moduli space by My, y. and
have defined

N¢ = Ng— Ne. (3.24)
We now examine walls or vacua implied by the moduli

matrices. Let us begin with the simplest case of the
moduli matrix H, given by

(H)™ = Veot,,

where the flavor locked with the color r is denoted as A,
and is chosen as

(3.25)

1=A,# A, =Npg, for r # s. (3.26)
Let us define a matrix o(M): o(M)'y = my 6", which
satisfies the relation, HyeM> = ¢“™YH, with the moduli

matrix (3.25). By using this relation, we find that

Q = 2oy, (§ = e7(M)y) (3.27)
gives a solution of the BPS Eq. (3.13) with the moduli
matrix (3.25). This solution corresponds to a vacuum

H'=H,, 3 = o(M), W, =0, (3.28)
apart from the freedom of gauge transformations. Since
there is a one-to-one correspondence between the BPS
solution and the moduli matrix H, after fixing the world-
volume symmetry, this moduli matrix describes the vac-
uum. We denote the moduli matrix corresponding to the
vacuum (A) = (A, - - - Ay,) as Hyy).

The redundancy of moduli matrix H, due to the world-
volume symmetry (3.6) can be fixed in several ways. The
first possibility to fix the world-volume symmetry is to
choose H in the following form

Ay Ay,
* 0 * *
* 0 * *

, (3.29)

which is useful for some purposes. This is the so-called row-reduced echelon form. It is known in the theory of the linear
algebra that any Nc X N matrix can be transformed into this form uniquely by using GL(N¢, C) in Eq. (3.6).
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We find, however, that the following form is more useful. Let us choose the form for the moduli matrix H, by using

the transformation (3.6) as

A Ay
0 1 = *
0 1 =

Hy = ¢

In the rth row, all the elements before the A,th flavor are
eliminated, the A,th flavor is normalized to be unity, and
the last nonvanishing element eV ( € C — {0}) occurs at
the B,th flavor . We can choose these flavors A,, B, to be

ISA1<A2<"'<ANC§NF, (331)
A, <B, (3.32)
B, # B;, forr=s. (3.33)

When the set of flavors {B,} are not ordered like {A,} in
Eq. (3.31), we must eliminate some more elements to
remove the redundancy due to the world volume symme-
try. This procedure to eliminate these elements can be
unambiguously defined as is described in Appendix B. We
call this form the “standard form”. We show in
Appendix B that the general moduli matrix H, can be
uniquely transformed to the standard form by means of
the world- volume symmetry (3.6) and that the world-
volume symmetry is completely fixed by transforming H,,
to the standard form.

In the standard form it is easy to read vacua at both the
boundaries y = *oo for walls (or vacua) corresponding
to the moduli matrix H,. To see this point, note that the
form of solution for H' in Eq. (3.5) implies the trans-
formation of the moduli matrix

Hy — HyeM (3.34)

under a translation y — y + y,. Since the world-volume
symmetry allows us to multiply the matrix (V)" =
e "™ 8" from the left of Hy, the matrix VHye re-
mains finite when taking the limit y, — oo to give

0 LA<A,
Hy = NG A=A, — oot
O(e*(mA,*mA)yo) LA>A,

(3.35)

where we used the property of the standard form (3.30).
The symbol = denotes the equivalence by using the world-
volume symmetry. Similarly, we can choose another
transformation (V)" = e 50~V with v, defined in
Eq. (3.30) in taking the limit y, — —oo, to find that H,,
approaches to

HpA — \Jcsb . (3.36)

(3.30)

\
These observations mean that a multiwall solution corre-

sponding to the moduli matrix (3.30) interpolates be-
tween a vacuum labeled by (AjA,---Ay.) at y— o
and a vacuum (BB, - - - By_) at y — —o0. We will denote
such a wall solution by (AjA,---Ay. < BBy - By_).
One should note that we enclosed both boundary condi-
tions at y = *oo into a single bracket (), since we have
used a gauge fixed representation for the multiwall solu-
tion, as described in Sec. IIC. We denote the moduli
matrix corresponding to the topological sector for a
multiwall interpolating between the vacuum (A) =
(Aj--+Ay.) at y=oo and the vacuum (B)=
(B -+ By.)aty = —o0 as Hy,p).

For later convenience, we give some definitions for wall
solutions associated with particular standard forms. We
call a ““single wall” if the solution is generated by H, in a
particular standard form which contains only one non-
vanishing element e”s other than unit elements corre-
sponding to the vacuum at y = oo, namely, if B, = A,
for r # s and B, = A, + [ + 1 with /(= 0) zero elements
between B, and A, like

A A B,
0 1 0 :
0
0 I 0---0 e 0
Hy = \/E Hzr_/

0
-0 .

(3.37)

This H,  generates a  wall labeled by

(A Ay Ay Ay — AL Ay - Ag+ T+ Ay ).
We call [ the ““level” of the single-wall. We call a single
wall an “elementary wall” or a “compressed wall” if its
level [ is zero or nonzero, respectively.

D. Topological Sectors in Moduli Space

Any moduli matrix in the standard form has one-to-
one correspondence with a point in the moduli space
because of the uniqueness of the standard form as proved
in Appendix B. The moduli manifold corresponding to a
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boundary condition (A;A,---Ay.) at y— oo and a
boundary condition (BB, - - - By,) at y — —oo defines a
topological sector denoted by

<A1A2“'ANC>‘_<B|BZ"‘BNC>

M NN . (3.38)
The standard form of the moduli matrix is quite useful
to classify the moduli manifold into these topological
sectors, since the boundary conditions can readily be
read off as we have seen above. The boundary condition
at y — oo is uniquely specified by the standard form,
whose label (A;A; - - - Ay_) is ordered as in Eq. (3.31). A
given boundary condition at y = —oo, however, corre-
sponds to several different standard forms, since different
labels (BB, - -+ By,) and (C,C, - - Cy_) stand for the
same boundary condition if they are just different order-
ings of the same set {B,} = {C,}. Therefore a single
topological sector cannot be covered by a single standard
form. Several patches of the coordinates corresponding to
several different moduli matrices in the standard form are
needed to cover the whole moduli space in that topologi-
cal sector.

On the other hand, the row-reduced echelon form (3.29)
specifies only the vacuum (A,A, - - - Ay_) at the boundary
y = oo. All possible BPS multiwall solutions with that
boundary condition at y = oo are covered by a single row-
reduced echelon form, since the row-reduced echelon
form does not distinguish the boundary condition at y =
—oo at all. One topological sector is covered by only one
patch of the coordinates in the row-reduced echelon form,
which is not useful to classify topological sectors.
Therefore the row-reduced echelon form (3.29) is useful
to discuss the relation between submanifolds covered by
different patches of coordinates in the standard form.

In this paper, we use the standard form, except other-
wise stated. Once a topological sector is given, there exist
Nc! moduli matrices H()(A]"'ANC‘_B]"'BNC) in the standard

form (3.30) corresponding to the ordering of the label
(ByB, - - - By,) for the vacuum at y = —oo. Components
in each H, are coordinates in that topological sector, and
every topological sector is completely covered by these
sets of coordinate patches. Moreover every point in the
topological sector is covered by only one of them without
double counting, because the standard form is unique as
shown in Appendix B.
If the label (BB, - - - By,) happens to be ordered

* = By, (3.39)
then the submanifold represented by the moduli matrix in
the standard form has the maximal dimension in that
sector, since the world volume symmetry (3.6) is fixed
completely to determine A, and B, and we have no more
freedom to eliminate any elements between A, and B,. Its
real dimension is calculated straightforwardly as

PHYSICAL REVIEW D 70, 125014 (2004)
N¢ N¢
. AV—(B
dim ¢ MY ® = (Z B,-Y A,>.
r=1 r=1

Thus we call such a moduli matrix in the standard form
and the corresponding submanifold as the ‘“‘generic mod-
uli matrix” and the “generic submanifold” for each to-
pological sector, respectively.

On the other hand, if B, in H, in the standard form is
not ordered as (3.39) H, has smaller dimension than
(3.40) because we have to eliminate some elements be-
tween A, and B, to fix (3.6) completely. Its dimension can
be counted by the method given in (B11) in Appendix B.
Submanifolds represented by one coordinate patch other
than the generic submanifold are considered to be
“boundaries” of the generic submanifold. We will explain
this in later sections.

The “maximal topological sector” is defined by the
sector that represents domain walls interpolating between
vacua (1,2,--+,Ne) —(Ng —Ne+1,-++, Ng — 1, Np).
Its generic moduli matrix is given by

(3.40)

1 % * x 0 0
0 1 *
Hy, = Ve (3.41)
* 0
0 0 1 =% * %
— ——
NF—Nc+1

By using the formula (3.40), we find that the number of
the complex moduli parameters, NcNc given in
Eq. (3.23), is equal to the complex dimension of the
maximal topological sector:

dimc _’]Vl<1,2,"',Nc>‘—<NF_NC +1,+,Ng—1,Ng)

= dim¢ My, y.(= NcNe). (3.42)

Let us now count the number of topological sectors,
which are defined by boundary conditions at y = *oo0.
The restriction (3.32) of the labels in the standard form
corresponds to the restriction for the boundary condition
to allow BPS saturated domain walls.®> Because of this
restriction, the number of different topological sectors in
the moduli manifold which allow BPS domain walls is
given by

Npg! (Ng + 1)!
Nc!Ne! (Ne + D'(Ne + 1Y

Ngps = (3.43)

8We have chosen one set of four supercharges to be con-
served. Solutions conserving the other four supercharges are
called anti-BPS walls and are not counted except for vacua
which conserve all eight supercharges.
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where we identified the BPS and anti-BPS walls with the
boundary conditions at y = *oo exchanged and counted
only once. We have confirmed this formula for lower
values of N by actually counting the number of different
maximal moduli matrices. A proof for general N and Ng
is given in Appendix E.

If we allow both boundary conditions for BPS and non-
BPS walls, we can choose arbitrary two vacua at the
boundaries. Consequently the number of topological sec-
tors is larger, and is given by

1

= ENFCNC(NFCNC + 1), (3.44)

N, top.sec.

where we identified two boundary conditions at y = o0
exchanged. The difference between (3.44) and (3.43)
should be the number of topological sectors for non-
BPS domain walls;

NnonfBPS = Ntop.sec. - NBPS
1 Ng! [ Np!

2 Ne!Ne! L NGING!

PHYSICAL REVIEW D 70, 125014 (2004)

E. Wall Positions and (Quasi-)Nambu-Goldstone
Modes

Now, let us discuss how to extract informations on
positions of walls from the moduli matrix H,. As ex-
plained in Appendix A, positions of walls are best read
off from the profile of the energy density & =
(c/2)2log(detQ) given by Egs. (2.40) and (3.17). We
can, however, guess positions of walls roughly from the
moduli matrix H,, without an explicit solution for ). For
simplicity, let us discuss the case of Nc =1 with a
generic moduli matrix for the maximal topological sector

Hy = Je(en, e, -+ -, "), rp =0, (3.46)
where r, are the complex moduli parameters. Let us
define new complex parameters Y, by

A = Fa+1 A

Y= - =1+, Np. (347

my — Mp+q

We denote Re(Y,) = y,. By using a translation (3.34) and
the world volume-symmetry transformation (3.6) with

!
— 2(Ng +~1)' + 1} (3.45) V = e~ "87™sY0_the Bth flavor component of H, becomes
(Nc + D!(N¢ + 1! . unity
e_rB_mB)'oHOeMyo = \/E( .- e(mB—l_mB)(yO_YB—l)’ 1, e_(mB_mB+l)(y0_YB)’ .. )

If we assume y; > y, > -+ > yy ; for simplicity and
consider the region of yg_; > y, > yp, then the Bth
flavor component is dominant whereas the other compo-
nents become negligible

e*’B*mBYO(HOeMYO)A ~ \Jc848, (3.48)

corresponding to the vacuum specified by that flavor B.
As y, decreases, the dominant element shifts to the right
gradually in the flavor space (to larger values of flavor
index) as: \/c648 — /c64B+D - .. This shift of the vac-
uum from B to B + 1 occurs around the transition point
vg. Therefore yp should approximately the position of the
domain wall separating the vacuum B and B + 1. Thus we
find that the number of moduli parameters for positions of
walls is N — 1 for the maximal topological sector in this
Nc =1 case.

We can repeat the same argument for each color com-
ponent in the general N case. Therefore the number of
moduli parameters for positions of walls in the maximal
topological sector is given by

Nyai = Ne(Ng — N¢) = NN, (3.49)

which is nothing but the maximum number of distinct
walls. One of them is the center of masses of a multiwall
configuration, which gives an exact Nambu-Goldstone
mode corresponding to the broken translational symme-
try. The others are approximate Nambu-Goldstone modes,
since the position of each wall can be translated indepen-

\
dently in the limit where the wall is infinitely separated

from other walls.

There also exist Nambu-Goldstone modes for internal
symmetry. In our case of nondegenerate mass, the global
flavor symmetry acting on the hypermultiplets is
U(1)M ! 1t is spontaneously broken by wall configura-
tions in the maximal topological sector (3.42) completely.
We have Ng — 1 moduli parameters which can be attrib-
uted to the Nambu-Goldstone theorem associated with
the spontaneously broken flavor symmetry. The remain-
ing moduli parameters cannot be explained by the spon-
taneously broken symmetry. They are called the quasi-
Nambu-Goldstone modes, and are required by unbroken
SUSY to make the moduli space a complex manifold
[29,30]. The number of the quasi-Nambu-Goldstone
modes is given by

Nong = 2NcNe — NeNe — (Ng — 1)

= (Nc — D(N¢ — 1). (3.50)

When we construct effective field theories on walls,
these (quasi-)Nambu-Goldstone modes are promoted to
(quasi-)Nambu-Goldstone bosons. Together with fermi-
onic zero modes, they constitute chiral multiplets. The
effective theory is a nonlinear sigma model on a Kihler
manifold as a target space. Corresponding to Nambu-
Goldstone bosons, this target Kédhler manifold admits
U(1)M 1 isometry. We return to effective theories in
Sec. VB.
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F. Infinite Gauge Coupling and Nonlinear Sigma
Models

SUSY gauge theories reduce to nonlinear sigma models
in general in the strong gauge coupling limit gy, g — .
In the case of theories with eight supercharges, they are
hyper-Kéhler (HK) nonlinear sigma models [31,32] on
the Higgs branch [33,34] of gauge theories as their target
spaces.’ Since the BPS equations are drastically simpli-
fied to become solvable in some cases, we often consider
this limit. In fact the BPS domain walls in theories with
eight supercharges were first obtained in HK nonlinear
sigma models [6]. They have been the only known ex-
amples for models with eight supercharges [24,25,37,38]
until exact wall solutions at finite gauge coupling were
found recently [14,15,39]. When hypermultiplets in gauge
theories are massless, HK nonlinear sigma models do not
have potentials, whereas a nontrivial potential is needed
to obtain domain wall solutions. If hypermultiplets have
masses, the corresponding nonlinear sigma models have
potentials, which can be written as the square of the
triholomorphic Killing vector on the target manifold
[32]. These models are called massive HK nonlinear
sigma models. By this potential most vacua are lifted
leaving some discrete degenerate points as vacua, which
are characterized by fixed points of the Killing vector. In
these models interesting composite 1/4 BPS solitons like
intersecting walls [40], intersecting lumps [41,42], and
composite of wall-lumps [43,44] were constructed.

The BPS Eq. (3.13) for the gauge invariant () reduces
to an algebraic equation in the strong gauge coupling
limit, given by

Qoo = (81 oo = ¢ ' HpH]. (3.51)
Therefore in the infinite gauge coupling we do not have to
solve the second order differential equation for {) and can
explicitly construct wall solutions once the moduli matrix
H, is given. We will work out the cases of No =2 and
Ng = 3, 4 in detail as illustrative examples in Sec. IV.
Qualitative behavior of walls for finite gauge couplings is
not so different from that in infinite gauge couplings. This
is because the right-hand side of Eq. (3.13) tend to zero at
both spatial infinities even for finite g. Hence wall solu-
tions for finite g asymptotically coincides with those for
infinite g, and they differ only at finite region. In fact in
[14] we have constructed exact wall solutions for finite
gauge couplings and found that their qualitative behavior
is the same as the infinite gauge coupling cases found in
the literature [6,24,25,37]. Unfortunately we have also
found that the 1/g? expansion does not converge uni-
formly in extra-dimensional coordinate y [14].

Let us give the concrete action of nonlinear sigma
models in the rest of this subsection. Since the gauge

°This construction of HK manifold is known as a HK
quotient [35,36].
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kinetic terms for Wy, and 3 (and their superpartners)
disappear in the strong coupling limit, they become aux-
iliary fields whose equations of motion enable us to ex-
press them in terms of hypermultiplets as

Wi, = i(A"YITH(H'3 , H')T,],

S =2A""YTr(HAT,H' M), (3-52)

where (A™1)" is an inverse matrix of A;; defined by

A[] = Tr(HH-{TI, TJ}HZ) (353)

The auxiliary fields Y serve as Lagrange multiplier fields
to give constraints as their equations of motion

H'H't — g2t = cly,, H’H't =0. (354

As a result, in the limit of infinite coupling, the
Lagrangian reduces to

L7 =T (D, H)t D" H']

+ Tr{(HtY, — MHY)(SH' — HM)], (3.55)

with the constraints (3.52) and (3.54). This is the HK
nonlinear sigma model on the cotangent bundle over the
complex Grassmann manifold [17,35]

SU(Ng)
SU(N¢) X SU(N¢) X U(l)}
(3.56)

MU0 = TGy, y, = T*[

In our choice of the FI parameters, H' parametrize the
base Grassmann manifold whereas H? its cotangent space
as fiber.'” The isometry of the metric, which is the sym-
metry of the kinetic term, is SU(N), although it is broken
to its maximal Abelian subgroup U(1)¥*~! by the poten-
tial. In the massless limit M = 0, the potential V vanishes
and the whole manifold become vacua, the Higgs branch
of our gauge theory. So we have denoted the target mani-
fold by M¥=0 in (3.56). Turning on the hypermultiplet
masses, we obtain the potential allowing only discrete
points as SUSY vacua [17], which are fixed points of the
invariant subgroup U(1)"r~! of the potential. The number
of vacua is of course Ng!/N¢!N¢!, which is the same as
the case (2.28) of the finite gauge coupling.

In the case of N- = 1 the target space reduces to the
cotangent bundle over the complex projective space
T*CPYr~! = T*[SU(Ng)/SU(Ng — 1) X U(1)] [46] en-
dowed with the Calabi metric [47]. Since the metric is
invariant under the SU(Ng) isometry, whose maximal
Abelian subgroup is U(1)™~! it is a toric HK manifold.
This model has discrete Ny vacua and admits Ng — 1
parallel domain walls [24,25]. Moreover if Ng = 2 the
target space T*CP! is the simplest HK manifold, the

1OSetting H?> =0 we obtain the Kihler nonlinear sigma
model on the Grassmann manifold [45]. We thus have found
the bundle structure.
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S W

FIG. 2 (color online). CP' and the potential V. The base
space of T*CP!, CP' ~ §?, is displayed. This model contains
two discrete vacua denoted by N and S. The potential V is also
displayed on the right of the CP!. It admits a single wall
solution connecting these two vacua expressed by a curve.
The U(1l) isometry around the axis connecting N and § is
spontaneously broken by the wall configuration.

Eguchi-Hanson space [48] (see Fig. 2). This model con-
tains two vacua and a single BPS wall solution [6,37].

From the target manifold (3.56) one can easily see that
there exists a duality between theories with the same
flavor and two different gauge groups in the case of the
infinite gauge coupling [17,34]:

U (N¢) < U(N¢) = U(Ng — No). (3.57)

This duality holds for the Lagrangian of the nonlinear
sigma models, and leads to the duality between the BPS
equations for these two theories. The BPS equation for a
dual theory is discussed in Appendix D. This duality
holds also for the moduli space of domain wall
configurations.

G. Factorizable Moduli and Solutions with Finite
Coupling

If the moduli matrix H takes a certain restricted form
which will be defined below as the ‘““U(1)-factorizable
moduli”, the BPS Eq. (3.13) for our non-Abelian case can
be decomposed into a direct sum of BPS equations for the
Abelian case. In such circumstances, we can construct
exact solutions for finite, but special values of gauge
coupling by using the solutions found in our previous
paper [15].

The BPS Eq. (3.13) is covariant under the world-
volume transformation (3.6), where the matrix
HOeZM«VH(J)r transforms with multiplication of constant
matrices V and V1 from both sides of this matrix. The
world-volume symmetry allows us to make this matrix
HOeZMYH(J)r diagonal at one point of the extra dimension,
say, y = yo. If the matrix Hye*™”H{ with this gauge
fixing remains diagonal at every other point in the extra
dimension y # y,,

Hoe®HY = ¢ diag[ W, (y), Wo(), =+, Wy ()]
(3.58)

then, we call that moduli matrix H, as “U(1)-

PHYSICAL REVIEW D 70, 125014 (2004)

factorizable”. Note that such a property is a characteristic
inherent in each moduli matrix Hy, and is independent of
the choice of the initial coordinate y,. Thus the U(1)-
factorizability is a property intrinsically attached to each
point on the moduli manifold of the BPS solution. If the
moduli matrix is U(1)-factorizable, off diagonal compo-
nents of the matrix Hye?"” H(J)r vanishes at any point of the
extra dimension y by definition. This implies that each
coefficient of e?”4¥ in the off diagonal components must
vanish. We consider in this paper the case of nondegen-
erate masses, unless otherwise stated. In the nondegener-
ate case, the condition for the U(1)-factorizability can be
written for each flavor A

(H))™[(Hy)* T =0, forr+#s, (3.59)

where we do not take sum over the flavor indices A. In
other words, (H,)™ can be nonvanishing in only one color
component r for each flavor A. For instance, we can
choose H as

0 0 e3 0

0O 0 0 0
Hy = +Jc 0 e2 0 e (3.60)
e’ 0 0

0

We can rearrange these moduli matrix to a standard form
(an echelon form) in Eq. (3.30) with the world-volume
symmetry keeping the forms (3.58),(3.59). Moduli ma-
trices representing points of U(1)-factorizable moduli do
not always satisfy the condition (3.59), because of the
redundancy of the world-volume symmetry. We can al-
ways establish the U(1)-factorizability of moduli matri-
ces by checking the condition (3.59) in the standard form.

For such a U(1)-factorizable moduli, it is sufficient to
take an ansatz where only the diagonal components of the
matrix () survive

Q = diag.(e*1, 22, - - -, e?nc), (3.61)

where i, (y)’s are real functions. With this ansatz, the BPS
Egs. (3.13) for the non-Abelian gauge theories with the
U(1)-factorizable moduli with the condition (3.58) reduce
to a set of the BPS equations [14,25] for the Abelian
gauge theory

gc
33% = T(l - e’wrW,), for r = 1, 2, . 'NC,

(3.62)
where the functions W, defined in (3.58) are given by
W, = e2mayt2ra, (3.63)
AEA,

A, is a set of flavors of the hypermultiplet scalars whose
rth color component is nonvanishing. Note that the con-
dition (3.59) of the U(1)-factorizability can be rewritten
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as A, NA;= ¢ for r # s. In this case, the vector
multiplet scalars 3 and the hypermultiplet scalars H'™
are given by [14]

E = diag.(ay¢1, ay(ﬁz, tee, aylﬁNC), (364)

HIMA = Jee ¥ tmay=yo)+ry (3.65)

with a gauge choice of W, = 0. The energy density £ of
the BPS multiwalls in Eq. (2.40) are obtained by a sum-
mation of energy density for each individual wall co2y,
as

Nc
£ =c,Tr(X) =c> a3, (3.66)
r=1
Therefore, the profile of the energy density for the BPS
multiwalls are obtained by a simple summation of those
of individual wall generated from different ¢,. Since
moduli parameters contained in the BPS Eq. (3.62) for
each ¢, are independent of each other, we find that the
walls originated in different ¢, can have positive and
negative relative positions maintaining their identity.
When two walls can go through each other like here,
they are called penetrable to each other. More generally,
if we take up two sets of walls belonging to two diagonal
entries of Eq. (3.64) of the U(1)-factorizable case, these
two sets are mutually penetrable, in the sense that they
can go through each other provided the relative distances
between walls in the same diagonal entry are fixed.
We have found previously that the U(1) gauge theories
allow exact BPS solutions for finite gauge couplings [14].‘

e 2 0 0
H() = \/E( 0 0 e "

0 e~ (3/2)my; 0

we obtain an exact solution for a BPS four-wall

l,//l = log[e2m(y7yl) + 672’”(}'7)’1) + m]’

Wy = log[emV7y2) + g=mb=»2)] (3.72)

Wy = % log[e™0=ys) 4 =my=ys)],

Although we have given only the solution for ¢, the
vector multiplet scalar % and the hypermultiplet scalar
H' can be obtained readily from ¢ by using Egs. (3.64)
and (3.65).

IV. CONSTRUCTING EXPLICIT SOLUTIONS AT
INFINITE COUPLING

In this section, as explicit examples, we construct BPS
wall solutions and investigate their properties in

the Nc = 2, Nr = 3, 4 cases. General N and/or Ny cases
are similar. In the first subsection, we work with
the simplest case of N =2, Ngp=3 to illustrate

PHYSICAL REVIEW D 70, 125014 (2004)

These finite gauge couplings have been found to be re-
stricted to specific values in relation to mass splittings:
exact solutions for single walls at g”c = 4(m, — m,)*/k>,
for k =2, 3, 4, and double wall at g%c = (m; — m,)> =
(my — m3)>. A number of exact solutions of the BPS
multiwalls for our non-Abelian gauge theory can be
obtained in the U(1)-factorizable cases by embedding
these known solutions into the Egs. (3.62) for the U(1)
factor groups. For example, in the case of No = 2, Np = 4
with

g’c = (Am)?, m; —my, =m3 — my = Am, (3.67)
and with a U(1)-factorizable moduli matrix

e "My1 T MY 0 0

HO = \/E< 0 0 e M2 e—m4yz> (368)
with real parameters y;, y,. Then an exact solution is

given by two copies of the solution for k = 2 as

l//l _ 1Og[em1(y—y|) + emZ(y_yl)],

(//2 = 10g[€m3()’*yz) + €m4(y7y2)]. (369)

This solution represents a double wall that is located at
y =y;and y = y,. More complicated exact solutions can
be obtained if we take a larger number of flavor and color.
For instance, in the case of No = 3, Np = 7 with
g’c = 4m?,
3 3 3.70
M = diag.<2m,§m, m, 0, —m, —Em, - m) ( )

and with a U(1)-factorizable moduli matrix

emR 0 0 eZmy,
0 ™ 0 0 )

0 0 e G/2my; 0

(3.71)

\
methods to construct the solutions and relations be-

tween the moduli matrices H, and profiles of solu-
tions for domain walls. This case is, however, equivalent
to the case of Nc =1, Np =3 by duality N < N,
and thus the properties of walls are also equivalent
to the Abelian case. In the second subsection, we con-
sider the case of N =2, Ng=4, which is the
simplest case that possesses characteristic properties
of genuine non-Abelian walls. We will define
matrix operators acting on the moduli space to
create multiwall solutions from a solution with walls
less by 1.

A. N¢c =2, Ny = 3 Case

In this case, there exist 3(= ;C,) vacua and maximally
2(= NcN¢) walls interpolating between these vacua.
Figure 3 illustrates the diagram of SUSY vacua and walls
in the space of the scalars of vector multiplets 2. Let us
construct explicit expressions of the exact solutions for
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3 (13)

h AN
7

7N

(31)

FIG. 3 (color online). Walls for Nc =2 and Ng = 3. This
model admits three single walls. Two of them are elementary
walls and the other is a compressed wall. The latter is obtained
in a particular limit of the double wall configuration. Meaning
of arrows is explained in Fig. 4.

the BPS equations. First of all, it is important to classify
arbitrary 2 X 3 moduli matrices H, in the standard form
(3.30) into several types of matrices. The standard form
matrices

1 0 0

H0<12> = \/E<0 1 0>,
1 0 O

Hyq3y = \/E<0 0 1 ) “4.1)
0 1

0
Hypszy = \/E<0 0 1)

correspond to the three vacua (12), (13), and (23}, respec-
tively, as illustrated in Fig. 3. The three matrices with
complex parameters ry, r,, and r3,

1 0 O
Ho<12«—13>:\/5<0 1 ,>,

o —o00 < Re(r;) < oo,

1 e2 0
H0<13<—23>=\/E<0 0 1>,

1 0 e~
H0<12<—32>:\/E<0 1 0>,

—o00 < Re(r,) < oo,

—oo < Re(r;) < oo
4.2)

describe single wall configurations, where the suffix
(A|A, — B|B,) denotes a moduli matrix describing a
BPS state interpolating from the vacuum (B;B,) at y =
—o0 to the vacuum (A ;A,) at y = 400 . By these labels, we
recognize the first two of the matrices (4.2) describe
elementary walls and the last one a compressed wall of

PHYSICAL REVIEW D 70, 125014 (2004)

—>——  Elementary wall
—H— Compressed wall of level 1
=== Double wall made of

two elementary walls

FIG. 4 (color online). An arrow with a single arrowhead
denotes an elementary wall. An arrow with duplicate
(/-uninterrupted) arrowhead denotes a compressed wall of level
1 (I —1). An arrow with two separate arrowheads denotes a
double wall consisting of two single walls with the relative
distance as a moduli.

level one as defined in (3.37). As explained in Sec. III E,
positions yy, y,, and y; of the single walls labeled by
(12 —13), (13 —23), and (12 «— 32) can be guessed
roughly as

Re(rl) Re(rz) Re(r3)
NW=——" Vo= ————» WB=—"""—"»
nmy ms ny my mi ms
“4.3)
respectively. Finally, the moduli matrix
1 e2 0

Hy1o 03y =A/C ,

0(12¢23) \/—<0 1 en >
“4.4)

— 0o <Re(ry) < oo,
— 00 < Re(r,) <o

corresponds to a double wall interpolating from the vac-
uum (23) to the vacuum (12) through the vicinity of the
vacuum (13). Note that we have distinguished the moduli
matrix (4.4) from the third one in Eq. (4.2) by their orders
of flavors. As described in Sec. IIC, it is convenient to
distinguish the vacua with different order of labels. This is
because there is no freedom of local gauge transforma-
tion, if we fix the gauge by eliminating the off diagonal
components of the scalar . In that gauge, the labels for
moduli matrices reflect trajectories in the space of the
diagonal components (2°, 2°) as illustrated in Fig. 3. This
is the most convenient gauge to represent the solutions,
which we usually use. Various types of walls are distin-
guished by arrows as explained in Fig. 4.

The above identification between moduli matrices and
BPS objects are performed without constructing the exact
solutions. It is also easy to investigate relations between
these moduli matrices. For instance, the moduli matrix
Hy(1223y approaches Hy .3y in the limit of ry — —oo.
Since y = y, corresponds to the position of the wall
interpolating between (23) and (13), r, — —oo implies
expelling the wall to negative infinity y, — —oo. This
explains H0<12¢_23> —_ H0<124_13> in the limit of ry — —00,
The moduli matrices Hyp—3 for single wall and
H 1223y for double wall describe BPS states interpolat-
ing between the same pair of the vacua at the boundaries,
in other words these moduli matrices describes different
submanifolds of the same topological sector. To under-
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stand how these submanifold connect with each other, it
is convenient to consider these moduli matrices in the
row-reduced echelon form (3.29). Let us perform the
world-volume symmetry transformation (3.6) on the
Hy1223) so that the moduli matrix becomes a row-
reduced echelon form.

1 —en
Ho<12—23> - (O 1 >H0<12<—23>
1 0 _er1+r2
- ﬁ(o 1 en >

Here, if we take the limit of r; — —oo, keeping the
parameter

4.5)

ry=r; +ry,+ i 4.6)

finite (r, — 00), we find that H53y in the row-reduced
echelon form becomes Hyjs.35). This relation between
H1223) and Hyjp—3zy i quite different from that be-
tween Hyo3 and Hyp.—13), while one describes a
double wall and the other describes a single wall in both
cases. Since the boundary conditions are not changed by
transition form Hyjo.3) t0 Hyo3z in this case, the
transition means that the two walls approach each other
and are compressed to a single wall. In the region of y; =
¥,, a profile of the energy density of two constituent walls
are compressed into a profile of a single peak. The pa-
rameters y; and y, do not represent positions of the walls.
Instead, the parameter y; — y, represents the extent of
compression of the walls. The relation (4.6) implies the
parameter y;, which denotes the position of the single
wall labeled by (12 «— 32), is related to the center of mass
of the double wall formally

_ Toyy1 + Taa)y2
Toesy + Ty

" @.7)

We will discuss this compression of walls more using an
exact solution in the latter part of this subsection. This
phenomenon of compressed wall has also occurred in the
Abelian case [14,24,25]. Actually, we find that this No =
2, N = 3 case is dual to the Nc = 1, Ng = 3 case, which
is the case of the Abelian gauge theory.

Now let us construct exact solutions explicitly with the
infinite gauge coupling by the formula for solutions (3.51)

e N
(H1)22 0 (H1)23
08
04
0z
-6 -4 2 2 2 cJ
a)

FIG. 5 (color online).
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and discuss the behavior of solutions. As our first ex-
ample, let us start with solutions for the moduli matrices
Hy12—13) to confirm that Hy,—3) in fact gives a domain
wall interpolating between SUSY vacua (13) and (12).
Note that the moduli matrix Hygy3y are U(D-
factorizable and the () for above H, calculated by
(3.51) forms a diagonal matrix, thus we can easily find
S as

emly 0
Sta—13) = < 0 oy f g2myIRe(r) ) (4.8)

where we take the easiest gauge choice. Therefore, from
(3.5), we obtain the following single wall solution

1 0 0
H!' = \/E 0 M G=yy) M3y +im(ry) ,

\/827112(;'7;'] ) 4 2m3(y=y1) \/lenz(_v*_vl )+ e2m3(r=y1)

(4.9)

where Im(r;) is a moduli with respect to broken
U(1)g-phase. % and W, can also be calculated from S as

. my 0
2 + lWy = ( 0 ngzﬂlz(}'ﬂ'l)+m3621n3(y*y1) ), (410)
2 (r=y1) 4 p2m3(y=yy)
The components X°, 33 read
SO — e 4 mzezmz()’*}'l) + m362m3(,\’*}'1)
! e2m(=y1) 4 p2ms(y=y1) @.11)

ny ezmz()’i}’l) + ms 62"13(}’7}’1)

23=m1

>

e2m(=y1) 4 p2ms(y=y1)

while 3!, 32, and W, vanish due to the U(D)-
factorizability of the moduli matrix Hs—z). These
wall solutions for X°, 33, and H, are illustrated in
Fig. 5. From these solutions, we confirm that the parame-
ter y; defined by (4.3) is really the position of the wall in
this case. The configuration approaches to the vacuum
(13) in the limit y — —o0

/100 im0
Hl_ﬁ(o 0 1)’ E‘(o m3>’ @.12)

and to the vacuum (12) in the limit y — oo

23

-

!
(=]
I
o=
|
%)
%)
o
=

Configurations for 20, 33 and (H")??, (H")?, in the case of (m,, my, m3) = (1,0, —1) and r; = 0.
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e 1 00 _(m; 0

H —\/E<0 ! 0)’ 2—(0 m2>. (4.13)
Moreover 20 + 33 = 2m, implies that this one wall so-
lution follows a straight line from (13) to (12) in the
(29 23)-plane when y varies from —oo to +00, as shown
in Fig. 3. Generally, we find that the configuration of the
solution for single wall is a straight line segment linking
two vacua in the (29, 3%)-plane with the gauge choice of
3=32=0.

The solution for the H 5.3y describing two walls can
be obtained similarly. We are, however, faced with a little
technical problem in this case. Substituting the explicit
form of the moduli matrix (4.4) into the formula (3.51),
we obtain

e2m2y+r’£

Q eZm]y + 62m2y+2Re(r2)
- e2myy + €2m3y+2Re(r|)

62m2y+r2 >
y

(4.14)

and hence, off diagonal components appear. Therefore,
we should consider the general case where ) = SST is
given by

Q—sst— (“’+ @ ) (4.15)

W w_

with w+ € R, wy € C. Since the U(2) gauge symmetry
can be fixed by choosing S to be a lower triangular
matrix, we obtain an explicit form of the matrix §
N
S = ( 0y [0 ol ) (4.16)
s Jer

Although this gauge choice is appropriate to obtain an
explicit form of the matrix S from (), it is not convenient
to understand physics of walls since the off diagonal part
of both the vector multiplet scalars and the gauge fields
are nonvanishing, %/ # 0, W, # 0 in this gauge. We can,
however, calculate the gauge-invariant quantities without
the above explicit form of the matrix S as we explained in

23
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Sec. IIT A. For simplicity, we set M = diag.(m, 0, —m),
and (r(, r,) = (mR/2 +i0/2, —mR/2 — i6/2), then the
solutions for the scalar 3 are obtained by the formula
(3.17) and (3.20)

eZmy _ e*Zmy

0 —
E mezmy + e—2my + emR
_[*xm, 2lyl>R y==yl
0, 2|yl < R ’
5| = 2y VEOS@MY) * =T [ m, 2yl > R
e2my 4 o—2my 4 omR 2m, 2|y| <R’
“4.17)

where R represents the distance between the two walls if
R > 0. Configurations with several values of R for this
solution are illustrated in the (2°, 33)-plane with the
gauge choice 3! = 3? = 0 in Fig. 6, whereas a configu-
ration corresponding to the Hyp—3p) is a straight line
segment through the origin of the coordinate axis from
(32)(# (23)) to (12) in the same gauge X' = 32 = 0. The
difference between profiles of these solutions can be
understood as follows. If we allow local gauge transfor-
mations to eliminate the off diagonal components 3!, 32,

we can rotate a vector 3, by 77 around the 7' axis only in a
region of y < 0 so that the sign of 33 is flipped. This
interpretation can be strengthened by examining the
gauge-invariant quantity Iy, in Eq. (3.19). While
Lyage for single wall vanishes, it is nontrivial for the
double wall

Igauge _ 4m2€mR e2my + e—2my + emR
{[cosh(2my) + e"K]> — 1}?
_[16m2emOVI=R - oly| > R
{ 4m2e MR 2lyl < R’

(4.18)

In the limit of R — —o0, a profile of , /Iy, approaches to

a delta function as illustrated in Fig. 7

FIG. 6. Configuration for the double wall with m =1, R = 3,0, —3, and ¢ = 1. Figure (a) are paths of the solutions in the
(29, 33)-plane and Fig. (b) are energy densities, £ = (c/2)d3log(det{)). Note that the trajectory for R <0 passes through the
vicinity of the point (29, 33) = (0, 0), which is not vacuum, while the trajectory for R > 0 passes through the vicinity of the

vacuum (13).
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FIG. 7. Configuration of /I withm =1, R = 10, R = —10. If we take the gauge X' = 3% = 0 and set 6 = 0, then ,/Tppge =

gauge

g

W)l, and Wy2 = 0. Note that scales of the two figures are quite different. We find that a profile for R >> 0 is a quite low plateau which
has edges on the double wall, and a profile for R << 0 approaches to a delta function on the compressed single wall.

lim

R——o0

Igauge = md(y), (4.19)
where the factor 77 is obtained by integrating over the
whole region of the coordinate y. Usually we use the
gauge where X! =32 =0, WS = 0 unless otherwise
stated. In that gauge the gauge-invariant quantity is ex-
pressed in terms of gauge fields as in Eq. (3.22). Since the
gauge-invariant quantity /Ty, can then be interpreted
as W}l, = 78(y), we can devise a local gauge transforma-
tion to eliminate the Wy1 . The gauge transformation which
fixes the boundary condition at y = oo is given by a step
function A(y) = wO(—y)

Wl—w!'=w!+a,A(y) = 0. (4.20)
The resulting configuration turns out to be
=32 =, ¥ = S3¢(y),

3 3 3 33e(y) 4a1)

W= w2 = wi =

where e(y) is a sign function. By this singular gauge
transformation, a wall solution represented by a segment
broken at 29 = || = 0 is transformed to a straight line
segment which is generated by the third matrix in (4.2).
The result (4.19) appears to differ from the result /g,y =
0 calculated from the moduli matrix Hy».37), in spite of
the gauge invariance of Iy, This apparent discrepancy

is due to the fact that /e
|=] = 0.
We summarize all the topological sectors and the as-

sociated moduli matrices in the case of Nc = 2, Ngp = 3
in Table L

is ill-defined just at the point

B. Nc =2, Ny = 4 Case

The Nc =2, Ng =4 case is the simplest example
containing characteristic properties originated from a
non-Abelian gauge group. In this case, there are six
SUSY vacua, and six elementary walls interpolating be-
tween these vacua. There exist 20 BPS topological sectors
described by 25 kinds of moduli matrices in the standard
form, which we show explicitly in Appendix E Note that
if we choose an arbitrary set of vacua at both boundaries,
we find that there are 21 topological sectors, that is, there
exists one non-BPS topological sector, which interpolates
between vacua (14) and (23). If we consider the maximal
topological sector interpolating between vacua (12) and
(34), the moduli space is described by four complex
moduli parameters, of which four real parameters repre-
sent positions of four walls, and other four real parame-
ters represent the orientation of walls in the target space.
Among them, relative phase of vacua separated by the
wall can be understood as the Nambu-Goldstone mode.
We will also obtain one moduli parameter which cannot
be attributed to the spontaneously broken symmetry,
namely, the quasi-Nambu-Goldstone mode.

TABLE L.  Six topological sectors in the case of Nc = 2, Ng = 3. a; and a, are matrices
which generate wall configuration as will be explained in the next subsection.

top. sector moduli matrix dim. objects

(12) —(12) Hyz) 0 vacuum (12)

(13) —(13) Hy13y 0 vacuum (13)

(23) —(23) Hy3) 0 vacuum (23)

(12) —(13) Hy1213) 2 elementary wall a,

(13) —(23) Hy13-03) 2 elementary wall a,

(12) —(23)  Hy(12-23) ® Ho1o-3) 4 double wall (a,, a,)® compressed wall a,a,
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All single walls including elementary walls and com-
pressed walls are displayed in Fig. 8. Multiwall solutions
are displayed in Fig. 9."

A remarkable phenomenon in this case is that there
exists a pair of walls whose positions can commute with
each other. Let us show this property, considering the
topological sector labeled by (13) «— (24). A moduli ma-
trix for this sector Hyz—p4 is given by two complex
moduli parameters r,, 3 by

1 e

0 0
H0<13<—24)=\/E<0 0 1 > (4.22)

e

My omytr3

PHYSICAL REVIEW D 70, 125014 (2004)

We notice that this moduli matrix is U(1)-factorizable,
and a solution obtained with this moduli matrix is given
by

m1€2m1y + m2e2m2y+2Re(r3)

2myy 4 p2mpy+2Re(r3)
= */E(Je 0 0

Profiles of 3° = 33 and H! are illustrated in Fig. 10. This
solution describes a configuration of double wall. In this
case, position of the walls are exactly expressed by

Re(r3) _ Re(r)

, (4.25)
m; —mp ms — Ny

Y3 = Y2
In a region y, > y3, the configuration interpolates be-
tween vacua (13) and (24) through the vicinity of the
vacuum (14). The wall at y, (y3) interpolates between
vacua (13) and (14) ((24) and (14)). On the other hand,
in a region y; >y, the wall at y; (y,) interpolates as
(13) — (23) ((23) — (24)). Note that while intermediate
vacua are different from one region (y3 > y,) to the other
(y3 <y,), the two parameters y,, y; retain the physical
meaning as positions of the walls, in contrast to the
example of the compressed wall in the last subsection.
The wall represented by the position y, changes flavors
of nonvanishing hypermultiplet scalar from four to
three and changes the value of 3° — 33, while the wall
at y; changes flavors from two to one and changes 30 +
33. Thus, it is quite natural to identify the wall repre-
sented by the same parameter, although interpolated
vacua are different. With this identification, we interpret
the above configuration as two walls commuting with
each other.

In this and more generic cases with larger flavors
and colors, we find many pairs of walls which commute
with each other. On the other hand, there are also pairs of
walls which do not commute with each other. These pairs

UIn Fig. 9(a), five double wall configurations are drawn.
However two of them (14 «— 34) and (12 «— 14) are straight
lines whose position moduli parameters are not visible in this
figure. This is because we have displayed only the configuration
projected to the X-space, while the full configuration space is
larger. The wall (14 — 34) ((12 < 14)) does not go through the
(24) ({(13)) vacuum, as can be seen by the full configuration
besides the X.-space.

—\/32'”1 y +62m2y+2Re(r3)

0 3 _
E + 2 ezmly + ezm2y+2Re(r3) (4 23)
o 3 m362m3y + m4e2m4y+2Re(r2) '
20 - X = 62m3y + 62m4y+2Re(r2)
3'=32=W,=0,and
0 0
M3y em4v+r2 (4~24)

\/ezl1z3y T g2may+2Re(ry) \/eZIn:;)'+62m4y+2Re(r2)

\
are compressed to a single wall, if their relative distance

goes to the infinity to the direction where they do not
commute. Here we propose an algebraic method to dis-
tinguish whether two walls commute with each other or
are compressed. Our goal is to express the single walls as
creation operators on the (Fock) space of vacua. To this
end it is useful to define nilpotent matrices in the Lie
algebra SU(Ng) by (E; )iy = 88y (1 <i<j<Np).
The matrices a; = E;;;; generate elementary wall as
seen below. In our Ng = 4 case, they are a;, a,, a; given
by

23

FIG. 8 (color online).

All single walls for Nc = 2 and Ng =
4. Lines with a single arrow are elementary walls, whereas
lines with a double (triple) arrow are compressed single walls
of level one (two).
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(12)

N
N //

FIG. 9 (color online).

7< 7 N )
< . N
N N N MANE

2my 2ms 2meo 2my

b)

Multiwalls. (a) All double wall configurations composed of two elementary walls are displayed.

(b) Examples of triple wall and the four wall configurations in the maximal topological sector are displayed.

0100
00 0 O
a=Ex=14 090 0ol
00 0 O
00 0 O
00 1 0
a, = E23 = 000 0} (426)
00 0 O
00 0 O
00 0 O
“=Euw=10 0 0 1
00 0 O
We also define a;(r), E; ;(r) by
$0 4 w3 f f 20 4 53
f -5 w0y I
a) b)
(HY)2 (HY)' (HY)2 N (HY)!
10 5 ‘ 5 Woy -10 5 5 lDy
a) b)
(H1)24 o d (H1)23 (H1)24 o (H1)23
10 5 5 loy 10 5 . 5 10y
a) b)
FIG. 10.  Penetrable walls of (13 «—24) in N0 =2, Np = 4
case. M = diag.,1, —1, —3). (@) r; =5, r, = —5: the inter-
mediate region shows (23) vacuum. (b) r; = —=5,r, = 5,¢c = 1:

the intermediate region shows (14) vacuum.

a,-(r) = era,-, Ei‘j(r) = erE,-’j. (427)
Then they act on the moduli matrices from the right like

Hyze® ") = Hyqpl13 + ay(r))]

1 0 0 O
_ 1 0 0 0O I et O
_*/E<0100>00 1 0
0O 0 0 1
1 0 0 O
= \/E(O 1 e 0) = Hy12—13)-
(4.28)
Similarly we find
H0<13>€a3(r2) = Hy(1314) H0<13>€a‘(r3) = Hy13—23)
Hoaye®"™ = Hoy1z s, Hypaye®'"™ = Hynze o,
Hopaye™ ™) = Hynaesay. (4.29)

In other cases, %) acts on moduli matrices for vacua as
the identity operator up to the world-volume symmetry.
Thus these matrices ¢%(") can be interpreted as operators
generating elementary walls. The elementary wall de-
fined in Sec. IIIC changes the flavor by one unit i <
i + 1in the same color component and carries the tension
T(;—i+1y- This elementary wall is realized by the matrix
e% which we call “elementary wall operator”.
Interestingly, the mass matrix ¢M can be interpreted as
Hamiltonian for elementary walls

[eM, a;] = c(m; — miy)a; = T irya;. (4.30)

Only the following matrices are generated from commu-
tators of the matrices a;, a,, a;

E\3 = ajay = [Eyp, En], Eyy = ayaz = [Ep, Exl,

4.3
which generate level 1 compressed single walls made by
compressing two elementary walls, for instance
1 0 €5 0
Hy(pyeEnlrs) = \/E<O 1 0 0) = Hy1232). (4.32)

By further taking commutators including these new op-
erators corresponding to compressed walls, we obtain a
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new operator

Eyy = ajayaz = [EIZ’ E24] = [E13’ E34], (4.33)

which generates a level 2 compressed single wall made by
compressing an elementary wall with a level 1 com-
pressed wall.

Let us work out how to express arbitrary multiwall
states by these operators. An arbitrary complex upper
triangular matrix V can be written by means of the
matrices E; ;

V =1y, + D fYE ;= []explE, ;. (r)] (434

i>j

with complex parameters f*/ and r,. We thus find that an
arbitrary moduli matrix in the row-reduced echelon form
(3.29) can be constructed by multiplying this upper tri-
angular matrix to the moduli matrices representing the
vacua. However the moduli matrix in the row-reduced
echelon form do not distinguish vacua at y = —oc0 and
include several topological sectors in one matrix as was
explained in Sec. III D. Therefore we have to throw away
some parameters to obtain matrices describing a single
topological sector. We propose an alternative method,
which we call the operator method, to construct moduli
matrices for a multiwall by multiplying %) from the
right of moduli matrices for less walls by one. We will see
that this operator method provides efficiently multiwall
solutions, but unfortunately they do not in general coin-
cide with the moduli matrices in the standard form as
seen below.'?

Moduli matrices for a double wall can be constructed
by multiplying the operator for a single wall to the moduli
matrix for a single wall, for instance

1 e 0 0
H0<13<—14>€“‘(r3)=\/5(0 0 1 er2>=H0(13«—24>’

. 1 ¢ 0 0
Ho<12—13>€“‘(3):\/5<0 1 e 0>:H0<12—23>-

(4.35)

As we observed, a pair of walls is either penetrable or
impenetrable to each other. The double wall constructed
by these wall operators reproduce this distinction and
facilitate its understanding as follows. Noting that
[a,, a;] = 0, we obtain

H0<lg<_14>e“1(’3) = H0<13>eaz(r2)ea1(r3) = H0<13>€a1(r3)€a3(r2)

= Hy(13-23¢“"?.

(4.36)

On the other hand, since [a;, a;] = E|5 # 0, we obtain

2For our Nr = 4 case, the difference of the parametrizations
for four walls in the operator method and in the standard form
can be recognized by comparing Eq. (4.40) and the first matrix
in Eq. (F5).

PHYSICAL REVIEW D 70, 125014 (2004)

HO<12>eaz(V1)eal(r3) = H0<12>ea1(r3)ea2(r1)—[a](rg),az(rl)]
~ H0<12>ea2("1)—[111(rz),llz(rl)]

= H0<12>eaz(r1)—E13(r1+r3), (4.37)
where we used the world volume-symmetry as
aty = (1€
Hype" = 0 1 Hoy2y = Hy12)- (4.38)

In the limit r; — —oo with r' = r| + r; + i fixed, the
matrix in Eq. (4.37) approaches to a limit

H0<12>eaz(r|)ea|(r3) — H0<12>eE|3(r’) = H0<124_32>' (4.39)

Therefore, we find the remarkable fact:

Two walls are penetrable to each other, if they are
generated by operators E; j, Ey; which are commutative
[E; j, E;] = 0. If two operators are noncommutative to
each other, two walls are impenetrable, and are com-
pressed to a single wall generated by the single operator
E;; = [E;; Ey ], with j = k not summed.

In the end, we obtain a moduli matrix for four walls
interpolating between the vacuum (12) and the vacuum
(24) in the maximal topological sector by the operator
formalism as

H0<12<_34> = HO<12>602(f1)eaz(rz)‘*'ul(rs)euz(m)

B 1 e e
_*/E<o 1

e’ + e+ er1+r2

r3t+ry 0

). (4.40)

This is a generic moduli matrix in the maximal topologi-
cal sector. Note that the (2,3) element differs from that of
the corresponding matrix in the standard form given in
Appendix E

The four walls sector exhibits several interesting phe-
nomena. From the algebraic structure of the wall opera-
tors, we find a number of the corresponding pairs of walls
which are penetrable each other. First, two elementary
walls generated by the commuting operators a; and a; are
penetrable in the same way with the two wall sector
explained at the beginning of this subsection. Second,
two level 1 compressed walls generated by a,a, and a,as
are penetrable to each other due to the relation
la;a,, ayas] = 0 as shown in Fig. 11(a). Third, the ele-
mentary wall generated by a, and the level 2 compressed
wall generated by a a,a; are penetrable to each other
because of the relation [a,, a;a,as;] = 0. The third one is
realized in two ways. One is shown in Fig. 11(b) and the
other is realized as a mirror (23 — —33) of this figure.
We summarize moduli matrices for all topological sectors
in this model in Table IL

We now explain that the most of moduli parameters in
the matrix (4.40) can be understood as Nambu-Goldstone
modes except one moduli which is a quasi-Nambu-
Goldstone mode. Let us concentrate on imaginary parts
of moduli parameters in this moduli matrix. As described
in Sec. Il E, (Nc — 1)(N¢c — 1) quasi-Nambu-Goldstone
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FIG. 11 (color online).

Compressed multiwalls in the maximal topological sector. (a) Two level 1 compressed walls forming a

double wall are penetrable. (b) A level 2 compressed wall and a single wall forming a double wall are penetrable.

parameters are contained in such parameters, while
others are the Nambu-Goldstone parameters correspond-
ing to broken global symmetry U(1)*~!. The case of
Nc =2, Ngp =4 is the simplest case containing quasi-
Nambu-Goldstone parameters. We have only one quasi-
Nambu-Goldstone mode: (No — 1)(Nc — 1) = 1. Let us
consider the global transformation of U(1)r~ 1,
Hl — (Hl)l = HleiA, A= diag.()tl, Az, )13, )l4),
(4.41)

with 3%, A; = 0. The operators for the elementary walls
transform under this transformation as

ai(n)—[a;(nN) =e Mai(re™ =e "N a;(r) = ai(r'),

(4.42)

and we find the complex moduli parameters r; to trans-
form

rp—=ri=r—i(A — A3),
ry—=rh =1y —i(A3 — Ay), 4.43)
r3—=ry=r3 —i(A; — Ay),
rqg — 7"2 = T4 — l()\z - )\3)

Thus we find the solution in this Nc = 2, Ngp = 4 case

TABLE II. Topological sectors in the case of No = 2, Np = 4.
top. sector moduli matrix dim. objects
(12) —(12) Hoy12y 0 vacuum (12)
(12) —(13) Hy1p13) 2 elementary wall a,
(12) —(14) Hoyg1o—14) 4 double wall (a,, a;)® compressed wall a,a;
(12) —(23) Ho203) ® Hyg1237) 4 double wall (a,, a;)® compressed wall a;a,
(12) —(24) Hoy1224) ® Ho(1242) 6 (ay, a3, ay) ® (aza;, a;) ® (a,a,, az) ® a,aya;
(12) — (34) Hy1o34y ® Hy(1243) 8 (ar, ay, az, a;) ® (aya3, a1, a;) ® (aya3, a1a,) ® (ayay, as, a,) ® (ayayas, a,)
(13) «—(13) Ho3) 0 vacuum (13)
(13) —(14) Hy13—14 2 elementary wall a;
(13) —(23) Hy(1323) 2 elementary wall a,
(13) —(24) Hy304) 4 penetrable double wall (a;, as)
(13) —(34) Ho334 ® Ho(1343) 6 (a3, ay, a3) ® (ay, aya3) ® (a3, a,a,) ® a,a,a3
(14) —(14) Ho14y 0 vacuum (14)
(14) —(23) e ce (non-BPS state)
(14) —(24) Ho(144) 2 elementary wall a,
(14) — (34) Ho434y 4 double wall (a;, a,)® compressed wall a;a,
(23) —(23) Hops) 0 vacuum (23)
(23) —(24) Hoyz 4 2 elementary wall a;
(23) —(34) Hoypz 4y @ Hysas) 4 double wall (as, a,)® compressed wall a,as
(24) —(24) Ho g 0 vacuum (24)
(24) —(34) Hoyoqe 34 2 elementary wall a,
(34) — (34) Hogay 0 vacuum (34)
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contains  one
Im(r1 - r4).

quasi-Nambu-Goldstone  parameter

V. MODULI SPACE FOR NON-ABELIAN WALLS

In the first subsection, the moduli space for non-
Abelian domain walls is shown to be homeomorphic to
the complex Grassmann manifold. In the second subsec-
tion, we construct the moduli metric and show that it is a
deformed Grassmann manifold.

A. Topology of the Wall Moduli Space

In this subsection we discuss the moduli space for non-
Abelian domain walls. The U(N-) SUSY gauge theory
with Ng hypermultiplets maximally admits N, parallel
domain walls, with N, given in Eq. (3.49). All possible
solutions can be constructed once the moduli matrix Hy is
given. The moduli matrix H has a redundancy expressed
as the world-volume symmetry (3.6) : Hy ~ VH, with
V € GL(Nc, C). We thus find that the moduli space de-
noted by My, . is homeomorphic to the complex
Grassmann manifold'?:

‘MNF»NC = {HO|H0 ~ VH(), Ve GL(Nc, C)} = GNFvNC

N SU(Np)
" SU(Ng) X SU(N¢) X U(1)

G.D

This is a compact (closed) set. On the other hand, for
instance, scattering of two Abelian walls is described by a
nonlinear sigma model on a noncompact moduli space
[14,25,26]. We also find similar noncompact moduli such
as relative distances and quasi-Nambu-Goldstone modes
of orientational moduli in Sec. III E, and by an explicit
analysis of multiple non-Abelian walls in Sec. I'V. This
fact of the compact moduli space consisting of noncom-
pact moduli parameters can be consistently understood, if
we note that the moduli space M,y includes all BPS
topological sectors (3.38) determined by the different
boundary conditions. It is decomposed into

A1Ay- Ay )—(B1By B
MNF,NCZZM< 2 Ay )—(B1 By NC>

o (5.2)

BPS

BThe last expression by a coset space is found as follows.
Using V, H; can be fixed as Hy = (1y_, h) with & an N¢ by Ne
matrix. Consider a G = SU(Ng) transformation from the right:
Hy, — Hyg with g € SU(Ng). Although it is not a symmetry it
is transitive; it transforms any point to any point on the moduli
space The 1sotr0py group K can be found by putting & = 0 as

Hy = (1y,,0). It is K = SU(N¢) X SU(Nc) X U(1) with g; €
U(Nc), g2 € U(Ne), detg, detg, = 1, acting as

_ - g 0
Ho = (o 0= g7 Uy, 0§ )
Hence we obtain G/K =~ SU(Ng)/SU(N¢) X SUN¢) X U(1).

However note that it does not imply that the moduli admits
isometry G. This consideration deals merely with the topology.

PHYSICAL REVIEW D 70, 125014 (2004)

where the sum is taken over the BPS sectors. Note that it
also includes the vacuum states with no walls
(A1Ay - - Ay,) —(A1Ay - - - Ay.) which correspond to
Ng!/Nc!N¢! points on the moduli space. Although each
sector (except for vacuum states) is in general not a closed
set, the total space is compact. We call M _ . the “total
moduli space”. It is useful to rewrite this as a sum over
the number of walls:

NcNe

Z MNF Nc

— MO 1
= My.n. @ My, n. @

M None =
® My, (5.3)

with J\/lf‘vaNC the sum of the topological sectors with
k-walls. Since the maximal number of walls is NcNc,

MANe is identical to the maximal topological sector.
Ng,Nc

This decomposition can be understood as follows.
Consider a k-wall solution and imagine a situation such
that one of the outermost walls goes to spatial infinity. We
will obtain a (k — 1)-wall configuration in this limit. This
implies that the k-wall sector in the moduli space is an
open set compactified by the moduli space of (k — 1)-
wall sectors on its boundary. Continuing this procedure
we will obtain a single wall configuration. Pulling it out
to infinity we obtain a vacuum state in the end. A vacuum
corresponds to a point as a boundary of a single wall
sector in the moduli space. The k = 0 sector comprises a
set of Ng!/N¢!N¢! points and does not have any bound-
ary. Summing up all sectors, we thus obtain the total
moduli space My, . as a compact manifold. Note again
that we include zero wall sector, vacua without any walls.

These procedures are understood as a compactification
in the mathematical theory of the moduli space. In the
following we will see these in some simple examples.

(1) Let us discuss the simplest example of No = 1 and

Ng = 2. In the strong coupling limit g — oo this
model reduces to the massive HK nonlinear sigma
model on T*CP' or the Eguchi-Hanson space (see
Fig. 2). This model contains two vacua, N and S
corresponding to the moduli matrices Hy = (1, 0)
and Hy = (0, 1), respectively. Thus M5~ N @ S.
It admits a single wall connecting them, corre-
sponding to the moduli matrix Hy = (1, ¢") with
e” € C — {0}. This single wall possesses two real
moduli parameters corresponding to a transla-
tional zero mode Re(r) and a zero mode Im(r) X
[~Im(r) + 27n,n € Z] arising from spontane-
ously broken internal U(1) symmetry. So the mod-
uli space for the one wall solution is homeomorphic
to a cylinder without boundary: MAT! =~ R X §'.
By taking a limit Re(r) — — oo, the moduli matrix
approaches to the vacuum N: Hy — (1,0). On the
other hand, in the opposite limit Re(r) — +o0, it
approaches to the other vacuum S as Hy = (1, ") ~
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(e7",1) — (0, 1), where we have multiplied e™" us-
ing the world-volume symmetry (3.6). Thus, add-
ing two points N and § in M47° to two infinities of
.’Nl’ﬁ' we find that the total moduli space is ho-
meomorphic to a sphere (see Fig. 12)

My, =Ms00 MET ~{N e Ste{R x S}
~§2~CPL (5.4)

This procedure of adding infinities is a two-point
compactification in the mathematical moduli the-
ory. Physically this corresponds to the following
situation: Moving a wall to two spatial infinities,
the configuration approaches to two vacuum states
of this theory.

The moduli metric on this CP! manifold is of
course not the round Fubini-Study metric. It is
deformed to break two isometries in SU(2) pre-
serving one U(1l) isometry. Therefore it locally
looks like a sausage but the distance to the infin-
ities diverges. We will return to this point in the end
of this section but let us now make a comment on
physical validity to consider the topology of the
total moduli space instead of each topological sec-
tor. The authors in Ref. [43] constructed a solution
of 1/4 BPS equation in a D =4, N =2 SUSY
theory. It is a composite soliton made of a wall and
vortices (strings) ending on it. Topological stability
of this composite soliton can be understood by
interpreting vortices as sigma model lumps in the
effective theory on the wall if and only if we
consider the total moduli space (5.4) as the target
space instead of the one wall topological sector
METN =R X S'. This is because the second ho-
motopy group 7, ensuring the topological stability
of lumps is Z for CP! but is trivial for R X S'. The
total moduli space (5.1) for general Ng and/or N
provides the topological stability of more compli-
cated composite solitons recently constructed by
the present authors [44].

Next let us consider the case of No = 1 and Ng =
3. In the strong coupling limit g — oo the model
becomes the nonlinear sigma model on T*CP?
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homeomorphic to 7%Gj ,, the strong coupling limit
of Nc = 2 and Ng = 3 discussed in Sec. IVA. This
model admits a double wall solution as the maxi-
mal topological sector. We will show that moduli
space is homeomorphic to CP?. To this end it is
useful to introduce a toric diagram. The toric dia-
grams for CP' and CP? are displayed in Fig. 13.

(A) This model contains three discrete vacua at
A, B, and C corresponding to the moduli
matrices H, = (0,0, 1), (0, 1, 0), and (1, 0,
0), respectively. Therefore we have
MEP=AeBeC.

(B) There exist two elementary walls interpo-
lating between A and B and between B and
C corresponding to the moduli matrices
Hy=1(0,1,¢) and (1, e",0) (e" e’ E
C — {0} = R X §"), respectively. They ap-
proach to vacua as was seen above. A wall
connecting A and C given by Hy = (1, 0, ¢°)
is a compressed wall obtained from a double
wall solution in a particular limit by com-
pressing two walls without changing the
topological sector or the wall tension, and
so it is not included in J\/l’;:l' Therefore we
have M{T! =R X S'®@ R X §'.

(C) The moduli subspace for the double wall
solution is generated by H, = (1, ¢", &%)
(e" € C, ' € C —{0}). It has a topology
of R X S' X C. It sweeps inside the triangle
in Fig. 13(b) with the boundary line con-
necting A and C and without the both lines
A-B and B—C (because they are elementary
wall solutions'#) and without three points A,
B, and C. The torus fiber [Im(r), Im(s)] €
T? shrinks to Im(s) € S! at the line A—C
(Re(r) — —o0). Such a shrinking cycle
Im(r) € S' with a moduli for distance
Re(r) between two walls constitute r € C.
The nonshrinking cycle Im(s) with center of
mass position Re(s) comprise R X S'.
Therefore the moduli subspace for two
walls is homeomorphic to MAT2 =
R X S!' X C (see Fig. 14).

The factor C is homeomorphic to a disc D
without boundary. As found in [25,26] D is
endowed with the metric looking like a
cigar as shown in Fig. 14. It is also homeo-

FIG. 12 (color online). The total moduli space in the case of
Ng = 2, Nc = 1. It is homeomorphic to a sphere, but its shape

looks like a sausage when it is endowed with the metric.

“The lines A-B, B-C obtained by taking limits as
limge(y)——0Ho = (1, €", ¢*) and Hy~ (7%, e" 75, 1) — (0, €', 1)
(Re(s) — +oo with keeping r — s = t finite), respectively, have
different boundary conditions and so are not included. The
open line A—C corresponding to the compressed wall given by
Hy— (1,0, ¢*) (Rer — —oo in the above H;) has the same
boundary condition and therefore is included.
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FIG. 13 (color online). Toric diagrams. (a) The toric diagram
for CP'. CP' admits one holomorphic U(1) isometry as com-
muting U(1) isometries. Dividing CP! by this U(1), we obtain
the toric diagram for CP' as a segment (I-simplex). It is
parametrized by one U(1) invariant which is the momentum
map for the U(1) action. CP! is parametrized as a circle
fibration over it. The circle shrinks at the endpoints of the
segment. (b) The toric diagram for CP2. The CP? admits two
commuting holomorphic U(1) isometries. Dividing CP? by
U(1)? we obtain a toric diagram for CP2. It is parametrized
by two U(1)? invariants which are the momentum maps for the
U(1)? action. It consists of one triangle (2-simplex) without
boundary, three open lines A—B, B—C, and C—A on its edge and
three points denoted by A, B, and C. CP? is parametrized as a
torus fibration over this toric diagram, and one cycle shrinks on
three edge lines and both cycles shrink at three points A, B, and
C. Three edges with circle fibers are CP! submanifolds of CP2.

morphic to the two-dimensional Euclidean
black hole metric. In this case, the metric
for finite gauge coupling was also calcu-
lated exactly in [14] for particular values
of g. The metric has the same topology, but
is slightly deformed by g.

Combining all of these, we obtain CP2. We thus

have found that the total moduli space is homeo-

morphic to CP? (see Fig. 15):

My, =M e MiT e M2 ={A@Be C}
o{RXS'eR X S'}eo{R X S! X D}

~ CP2 (5.5
B
N CD)
N
1 \\ 1
: >~
: ' \s 'y,
P
A 0 C

FIG. 14 (color online).
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The topological sectors M47! and M472 are open
sets containing noncompact moduli parameters.
In the case of Nc = 1 and an arbitrary Nf, the
model reduces in the strong coupling limit to a
nonlinear sigma model on T*CPM~! 1In the
same way we can write down a toric diagram
parametrized by Ng — 1 invariants. The maximal
number of walls is Ng — 1 and the (Ng — 1)-wall
solutions given by the moduli matrix Hy, =
(1’ en, -, erN]:—l) (e, -+, er2 € C, el E
C — {0}) sweep a (Ng — 1)-simplex of the maximal
topological sector M’;,?;’Fil to which the Ng — 1
wall sector is homeomorphic. These parametrize
almost all regions of CPM~! except for infinities
(and so it is open). It is compactified by topological
sectors with less numbers of walls by taking some
limits.

(A) If we take a limit Re(r;) — —oo for 1 <
I = N — 2, the configuration remains in
the maximal topological sector .’Mx;_ll,
namely, it does not give independent
sectors.

(B) On the other hand, in the limit of
Re(ry,—1) = —o, we obtain H,=
(1, e™, - -+, e™2,0) in a different topologi-
cal sector with walls less by one, ,’M%ﬁf
Similarly in the limit of Rery ; — +o0
with keeping ri=r—r (1=I=<
Ng — 2) finite and Rer; — oo, we obtain
Hy=(0,1,¢", -+, e™2) resulting again
in .’M%i_f Both sets of parameters parame-
trize almost all regions of CPV¢~2’s except
for infinities again.

The procedure 1. does not change topological sec-
tors but 2. does. Continuing these two procedures 1.
and 2. we reach at single walls. There exist y, C, =
%NF(NF — 1) single wall solutions given by H, =
0,---,0,1,0,---,0,€¢",0,---,0) which corre-
spond to one simplexes or CP'’s without two
points. Among them, elementary walls in J\/l}\,F,1

The moduli subspace for the double wall configuration. It is homeomorphic to R X S! X D with D a two-

dimensional disc without a boundary. The disc D is endowed with the metric looking like a cigar.

125014-26



NON-ABELIAN WALLS IN SUPERSYMMETRIC GAUGE...

R

I ‘\®
LI 8 [
- ‘\
o_:o

0

S

PHYSICAL REVIEW D 70, 125014 (2004)

E
°

=y -

FIG. 15 (color online). The sum M3, & M}, ® MJ,. The double wall and single wall sectors are noncompact and the zero wall

(vacuum) sector is compact. The total space is CP? in Fig. 13(b).

are obtained as those given by the (Vg — 1) moduli
matrices Hy = (0,--+,0,1,¢",0, - - -, 0) with a pair
of adjacent nonvanishing elements. The rest are
subspaces in My=]. By adding Ny vacua H, =
0,-++,1,--+,0) as points in LM‘,)\,FJ further, we
obtain the full moduli space as CPVF 1.

In the above discussion, we did not use the fact that
we took the g — oo limit, so this is true for finite g
(although the metric is deformed in general).

In more general cases, the strong coupling limit is
the sigma model on T*Gy, ., Which is not toric
anymore. We do not have toric diagrams. However
it is now obvious that all information for the to-
pology of the total moduli space is encoded into
H,. We thus have found that the total moduli space
is homeomorphic to the complex Grassmann mani-
fold, My, n. = G, n.» but the metric on it is not a
homogeneous one. We construct the moduli metric
in the next subsection.

“4)

It is interesting to observe that in our decomposition of
the moduli space (5.3), the one wall sector M}VF:NC in-
cludes elementary walls only, i.e., single walls that are not
compressed walls. Compressed walls are contained in
double or multiwall configurations as limits without
changing boundary conditions. Therefore we can classify
single walls into elementary or (nonelementary) com-
pressed walls in terms of moduli space: moduli subspace
for nonelementary walls belong to boundaries of moduli
space of double or multiwalls, ajvlfvﬁc, but elementary

walls do not.

B. Metric on the Wall Moduli Space and Effective
Field Theory

Effective theory on walls describes local fluctuations of
moduli parameters depending on the world-volume coor-

dinates x_“ (u=20,---,3) and the Grassmann coordi-
nates 6, 0 in the D =4, N = 1 superspace (with four
supercharges).

First we construct the effective action explicitly for the
infinite gauge coupling limit g — oco. Following the
Manton’s method [49] we promote moduli parameters in

the moduli matrix H to weakly varying fluctuating fields

depending on the world-volume coordinates of walls. We

deal with bosonic fluctuation described by complex sca-

lars ¢X(x*) with X =1, - - -, NcNc for a while and then

will promote them to chiral superfields later. Then H' and

H? are given by

H' (¢, ¢, y) = S7H (¢, ¢", MHy(P)e™,  H> =0.

(5.6)

Using the constraints (3.52) and (3.54) with H> = 0,

H'H't = c1y, W, =ic (o, HYH,  (5.7)
the kinetic term in (3.55) reduces to
Lkin = TI‘(D#HHD'U“HI)
=Ti{a,H'To*H' (1y. — ¢ 'H'THY)].  (5.8)

Substituting (5.6) into this and using (3.51), we obtain the

y-integrand of the effective Lagrangian
L = cdxox(TrllogQ))a, p* o+ ™, (5.9)

which is a Kidhler nonlinear sigma model with the Kdhler
potential

K(p, &%, y)

cTr{logQ (¢, ", y)]
= clogdet[Q (o, &%, y)].

Promoting bosonic fields ¢* to D =4, N =1 chiral
superfields ¢*(x,6,0) we obtain the effective
Lagrangian for (multi) domain walls describing dynam-
ics of moduli including fermionic superpartners as

LEk = Cfd40fdy logdet(),_.

=c f d*o [ dylogdet(Hye® HJ).  (5.11)

(5.10)

Note that this Lagrangian is invariant under a transfor-
mation of H

Hy— H)y = ¢*H, (5.12)

with an arbitrary Nc X Nc matrix of D =4, N =1
chiral superfield A(x, 6, 8). The Kéhler potential receives
a Kihler transformation

125014-27



ISOZUMI, NITTA, OHASHI, AND SAKAI

logdet(Q) — logdetQ) + logdetA + logdetAt,  (5.13)

where the last two terms logdetA and logdetAt disappear
under the @ integration in the Lagrangian (5.11). The
transformation (5.12) is a local U(Nc) gauge symmetry
on the world-volume of walls, although corresponding
vector multiplet does not appear explicitly. It is actually
enhanced to its complexification U(N¢)¢ = GL(N¢, C)
because the lowest component of A are complex, and
can be understood as a local symmetry originated from
the global world-volume symmetry (3.6).

If the hypermultiplet masses are nondegenerate M = 0,
the integrand in the Lagrangian (5.11) is the Kihler
potential for the Grassmann manifold with the maximal
isometry SU(Ng) acting on H, as Hy — HyU with U €
SU(Ng) [45]. In contrast, SU(Ng) is explicitly broken
down to U(1)M~! by hypermultiplet masses M for our
nondegenerate mass case. Therefore the moduli space
metric for non-Abelian domain walls is the deformed
Grassmann manifold.

We have constructed the effective action on walls by
the Manton’s method. Here we discuss a symmetry ap-
proach to the low-energy effective action in the spirit of
the chiral Lagrangian in QCD. Since we use only sym-
metry to construct the action in this method, it deter-
mines the effective action only up to an ambiguity in the
Kihler potential with an arbitrary function of invari-
ants.'> The symmetry approach has an advantage of
wide applicability, including the case of quantum correc-
tions preserving the symmetry. In order to extract the true
collective coordinates from the moduli matrix H, pro-
moted to a matrix chiral superfield Hy(x, 6, ), we have to
take account of the redundancy expressed by the world-
volume symmetry (3.6). Since the moduli are promoted to
fields on the world volume, it is most convenient to
promote the world-volume symmetry GL(N¢, C) into a
local gauge symmetry on the world volume. One should
note that this local gauge symmetry is described by an
N¢ X N¢ matrix vector superfield V(x, 6, #) without ki-
netic terms. Hence V(x, 6, 6) is a Lagrange multiplier field
just to express the redundancy of the matrix chiral super-
field Hy(x, 6, A) at least in the classical level. Then the
world-volume gauge symmetry acts as

H,— e H,, eV — e MeVe A (5.14)

with A(x, 6, 6) defined in (5.12). This gauge symmetry is
complexified to GL(Nc, C) but we call this gauge sym-
metry U(N¢) as usual. Since the expression in Eg. (5.1)
merely means the topology, the world-volume theory
does not possess SU(Ng) global symmetry. Instead

5This kind of effective Lagrangian consistent with symmetry
has been constructed for non-Abelian vortices in [50]. It was
motivated to resolve discrepancy between the actions con-
structed by Manton’s method and by the brane configuration
[21] in string theory.

PHYSICAL REVIEW D 70, 125014 (2004)

SU(Ng) was explicitly broken down to U(1)"~! by the
hypermultiplet masses. In this respect we decompose H
as

H() = (hl’ I/lz, ceey, hNF)’ (515)
with h,(x, 6,0) (A =1,---, Ng) an Nc-vector of chiral
superfields. The world-volume theory is invariant under
U(N©)jocar X UM~ in which U(1)M ™! acts on h, as
hy — e'“h, with a constraint 3 a4 = 0. We define in-
variants under these symmetries'® by

X, = hieVhy,. (5.16)
When we construct the invariant Kihler potential for the
low-energy effective Lagrangian these invariants bring in
an ambiguity which cannot be determined by symmetry
alone and depends on the detail of the theory. Thus the
effective Lagrangian on the wall can be written by using
an undetermined function f, of invariants X, which
depends on the gauge coupling g in the original gauge
theory:

Lim= /d“ﬁ[fg(Xlw-,XNF) —-cuvV], (517

where C is the FI parameter for the world-volume gauge
theory. Eliminating V by its algebraic equation of motion
we obtain the effective theory in terms of independent
fields. This procedure is the Kédhler quotient. We conjec-
ture that Manton’s effective Lagrangian (5.11) may be
contained in (5.17) as a particular form of f,, although
we have not yet succeeded to demonstrate it explicitly.

The effective theory (5.11) or (5.17) on the world vol-
ume of walls includes all topological sectors. Which
sector it describes depends completely on which point
on moduli space one chooses as the background. As far
as one analyzes the effective theory perturbatively, it
describes the topological sector to which the background
belongs. This is consistent with the fact that the geodesic
distance diverges if one wants to reach other topological
sectors.

Here we make a comment on the difference between
effective Lagrangians for walls and other solitons. Other
solitons admit D-brane pictures. Instantons can be inter-
preted for instance by the DO-D4 system. The instanton
moduli space is obtained as an effective field theory on
the DO-branes as found in [19]. Taking its T-dual along the
D4-brane world volume it becomes DI-branes ending on
D3-branes. The effective theory on DI-branes gives the
monopole moduli space [20]. Effective Lagrangian for

'“These invariants parametrize the moduli space divided by
the global symmetry U ~1: X, € My /U1~ Since
Nambu-Goldstone bosons parametrize the U(1)M~!-orbit,
which was divided out, this space is parametrized by quasi-
Nambu-Goldstone bosons [30]. We thus find that X, correspond
to quasi-Nambu-Goldstone bosons.
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non-Abelian vortices has recently been derived by
Hanany and Tong [21] in the Hanany-Witten brane con-
figuration where vortices are identified with D1-branes. In
all the cases, the gauge group U(k) of these effective
theories come from gauge invariance on k D-branes. In
contrast to these cases, in our wall case, the gauge group
U(Nc) on the wall effective Lagrangian is identical to that
of the original gauge theory not related with the number
of walls. We have not yet found brane constructions
appropriate for the non-Abelian walls.

Before closing this section, we make a comment on a
possible interpretation of our moduli space as a special
Lagrangian submanifold. In the massless limit, the mod-
uli space of vacua (the Higgs branch of the gauge theory)
denoted as MY was the cotangent bundle over
the complex Grassmann manifold, M0 =T"Gy_y.
(3.56). By introducing hypermultiplet masses, most
points on M¥=0 are lifted leaving some discrete points
as vacua. The moduli space My, v, for walls is shown to
be homeomorphic to Gy, y. which is a base manifold of
MMZ0 It is a special Lagrangian submanifold of
T*Gy,, n.- We expect that moduli space for non-Abelian
domain walls in SUSY gauge theory with general gauge
group and general matter contents is homeomorphic to a
special Lagrangian submanifold in the massless Higgs
branch of vacua MM=0 of that gauge theory.

VL DISCUSSION

Let us list some of the interesting topics for future
researches.

As was shown in (5.11), the moduli space metric is
deformed by hypermultiplet masses. We assumed that
all masses are nondegenerate, so the global symmetry
was U(1)M ™! We expect that this expression is valid
even in the case that there exist mass degeneracy.
However Eq. (5.11) can contain non-normalizable modes
also. This is most easily exhibited for the case of M = 0.
In that case, the Kihler potential inside the y-integration
is the standard one for the complex Grassmann manifold
with the SU(Ng) isometry. It is a base manifold of the
massless moduli space of vacua TGy, y... The integrand
is independent of y and hence the y-integration diverges.
For partially degenerate masses we will obtain some non-

3 (14)

N
AN N N

N
2my 0

AN
2mo
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Abelian localized zero modes also. To obtain effective
theory on the world volume of walls, we have to throw
away non-normalizable modes. Degenerate mass should
also provide richer global symmetry [16], which is likely
to have implications to localization of non-Abelian gauge
bosons on walls. The case of degenerate masses is one of
the most interesting and immediate future problem.

We have found previously for Abelian gauge theories
that coupling the tensor multiplet provides the localized
massless Abelian gauge boson on the wall [14]. We wish to
come back to the problem of coupling tensor multiplets to
the non-Abelian gauge theories admitting non-Abelian
walls. We hope to localize non-Abelian gauge bosons on
the non-Abelian walls with four-dimensional world vol-
ume by coupling the tensor multiplets appropriately.

We have discussed only the topological sector contain-
ing BPS multiwalls. However, our model contains the
topological sectors admitting no BPS walls also. The
number of the topological sectors admitting no BPS walls
has been given in (3.45), which is one for Nc = 2 and
Nr = 4 and five for Nc = 2 and N = 5 as seen in Fig. 16.
For larger Nc or Ng, our model contains many more
topological sectors admitting no BPS walls. For instance
in the case of N = 2 and Ny = 4, a wall configuration
(23) < (14) is made by a BPS wall (13) — (14) and an
anti-BPS wall (23) — (13), or by a BPS wall (13) — (14)
and an anti-BPS wall (23) «— (24). The BPS bound for
this topological sector is never saturated by these con-
figurations, irrespective of the bound taking positive,
zero, or negative values. We do not know if the walls
composing these configurations are interacting or not. If
they are interacting it is very interesting to investigate
whether they form a stable bound state of walls or not, as
was found in a simpler model in four dimensions [51].
The fate of U(1) zero modes is also interesting. Even if
non-BPS wall solutions are difficult to construct, we can
construct the effective action by using the nonlinear
realization method or the Green-Schwarz method, which
has been worked out in four space-time dimensions [52].

Coupling with gravity has been discussed for single
wall and multiwall solutions in the case of Abelian gauge
theories [27,53]. In the limit of zero width of the wall, the
BPS wall solution reduces to the Randall-Sundrum
model. Therefore the Abelian wall embedded into super-

» 3

FIG. 16. Non-BPS walls. (a) Nc =2 and Ng = 4. (b) Nc = 2 and Ng = 5.
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gravity can be regarded as a smooth regularization of the
AdS space in the Randall-Sundrum model by finite wall
width constructed by physical scalar fields. It has been
found that the necessary gravitational deformations can
have another parameter giving asymmetry of the bulk
cosmological constant between left and right of the wall.
To embed the globally SUSY nonlinear sigma model into
supergravity, it has been difficult to obtain appropriate
gravitational deformations of the target manifold.
However, treating the model as a hyper-Kihler quotient
using the gauge theory, it has been found to obtain the
appropriate quaternionic manifold. It was essential to use
the off shell formalism [54] to couple the system to five-
dimensional supergravity. Our formulation is a natural
setting to embed the non-Abelian walls into the super-
gravity. We hope to complete the task in near future.

Moduli spaces for walls and vortices are Kihler
whereas those for monopoles and instantons are hyper-
Kéhler. In [21] the vortex moduli space was shown to be a
special Lagrangian submanifold of the ADHM instanton
moduli space. Investigating our wall moduli space as
some middle dimensional manifold of the monopole
moduli space is an interesting future problem.”

The moduli space for non-Abelian walls has turned out
in this paper to be the complex Grassmann manifold.
Taking a large Np limit, Ng — o0, it becomes the infinite
dimensional Grassmann manifold. It is a famous fact that
the moduli space of the KdV equation is the infinite
dimensional Grassmann manifold. Therefore we suspect
that there may be some deep connection between our
model and integrable systems.
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APPENDIX A: POSITIONS OF WALLS

In this Appendix we present the method to evaluate the
positions of walls. With the infinite gauge coupling, det(}
can be calculated explicitly for a given moduli matrix H,
as

""We would like to thank David Tong for a useful discussion.
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det(Q)) = det(é HOeZMyHg)
det(l HoeM H{, A>> I ’
C
2 Ne
exp<2 Z mAry>,
r=1

(AL)

(A)Evacua

|
det(; HOHO(A))

(AYEvacua

where sum is taken over the whole supersymmetric vacua
labeled by (A) =(A;A,---A,---Ay.). Note that ele-

ments of the Nc X N- matrix HOH&A>

(H()H(J)f< a)'s = JeHJ™ . In vacua, the energy density van-
ishes (c/2)03logdetQ) =0 and the difference of
(c/2)d, logdet() gives the topological charge of walls.
We expect that det{) exhibits a behavior similar to the
above formula (Al) containing exponential factor of
zyil my, y, even if we consider the case of finite gauge
couplings.

By use of the form (Al), we can guess positions of
walls more accurately without calculating the energy
density. For simplicity, let us consider the following Ng =
3 case,

is given by

¢(y) = logdetQ = log(ezfl(}') + 32.)"2()’) + €2f3(y))’

with linear functions f;(y) = m;y —u;, i =1, 2, 3, and
we assume m; > m, > m3. Because of the exponential
dependence in y, only one exponential factor in det() is
dominant in each vacuum, thus (y) is close to the linear
function of the dominant exponential

P(y) = max[f(y), 20, f3(0)] (A2)

As compared in Fig. 17, the linear approximation (A2) for
(y) is accurate except near the transition region. Since
a§¢(y) gives the energy density of walls, position of walls
are obtained as intersection points of the linear functions
for each region defined by

_Ml_l/lz _MZ_M3
N = my Y — s
1 2 2 3
_I/tl_lxt3 (A3)
Yo = ——
my — msy

if the two linear functions are really dominant in that
region of y. Note that if other linear functions are domi-
nant, the intersection point is hidden by contributions
from other terms and there is no wall at that point. Thus
we observe that in the case y; > y, there exist two walls
whose positions are represented by y; and y,, while in the
case y; <y, the configuration of walls looks approxi-
mately like one wall whose position is given by y,. If
we take the limit of y, — oo with y, fixed, we obtain a
compressed wall located at y,.
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a) y2 < 1

PHYSICAL REVIEW D 70, 125014 (2004)

> f2(y)
f 1(3/) -
yl/ g y
L N )
b) y2 >y

FIG. 17. Comparison of the profile of z = (), f1(y), f2(y), f3(y) as functions of y. Linear functions f; are good approximations

in their respective dominant regions.

APPENDIX B: THE STANDARD FORM OF H|}

In this Appendix, we show that any moduli matrix H}
can be transformed to the standard form

Ay Ay - ANC By Bl"'BN(;
o] [ |
: [

Hy= 0

U O

(B.1)

Here, the matrix elements in gray color with flavor in-
dices A, <A < B, and in black color with flavor B,
represent complex numbers which can and cannot vanish,
respectively. Vanishing elements are fixed by the world-
volume symmetry (3.6). We use the following simplified
graphical representation

i
0 5 a R

m m.

)

(B.2)

We now give a proof that an arbitrary moduli matrix
H| can be brought to the standard form by the world-
volume symmetry, and that no freedom of the world-
volume symmetry remains once we have the standard
form. Let us begin with arranging the left side of H|.
Let us assume that the first flavor index which has at least
one nonvanishing element is A;:

(B3)

In this equation, the right side of H} denoted by a wavy
line indicates that the form on this side is not yet
specified.

By using a part of degree of freedom of the world-
volume symmetry V € GL(Ng, C) in (3.6), it is possible
to transform the A;th column to (1,0, - - -, 0)”. Then the

matrix is of the form

; (B4)

where we have assumed that elements enclosed by the
dashed line happen to vanish and that the region enclosed
by the solid line in the A,th column has at least one
nonzero element. The following world-volume symmetry
(3.6) remains after the fixing of (B4):

V=10

(B.5)

Repeating these fixings Nc times, H} can be transformed
to an echelon form

A A Ane
Hy =
0
. (B.6)

Then the world-volume symmetry (BS5) reduces to

. (B.7)

Next we fix the right side of H} by using the remaining

world-volume symmetry (BS8). Let the first nonvanishing

column from the right be the B, th flavor and its lowest
nonvanishing component be in the rth row, like

(B.8)
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It is possible to eliminate the region enclosed by the
dashed line in (B8) by using (B7). Then Hé and the
world-volume symmetry become

where elements enclosed by the dashed line in H}
vanish accidentally and the rth column in V has
been used for this fixing. By using elements enclosed
by the dashed line in V in Eq. (B9), it is possible to
eliminate the (r, A, 1), (r, A,42), - - -, (r, Ay,) elements in
H{. Then H} and remaining world-volume symmetry
become

/}r 47‘+1/‘L‘+2 'AT+3 Br
m-| U L
i} ! O
in| , (B.10)
,
V= r
0

respectively.

Let us define HJ[r] as the (Nc — 1) X Np submatrix
removing the rth row in the matrix H, and the (N¢ —
1) X (Nc — 1) matrix V[r] by removing the rth row and
the rth column in the matrix V. Obviously, we can repeat
the above procedure for (H}[r], V[r]). Furthermore, the
procedure to obtain (H)[r], V[r]) from (H}, V) can be
repeated for (H{[r], V[r]) to obtain (H([r,s], V[r, s]).
Continuing this process N¢ times, all degrees of freedom
in V are finally used to fix Hé to the standard form (B1).

Let us give an alternative procedure to find the standard
form which is equivalent to the above procedure. This
procedure should be more practical if one wishes to list
up all matrices in the standard form parametrizing the
given topological sector labeled by (A;A,- - Ay.) —
(ByB, - - - By,). Let us first list up all possible orderings
of B,. Once A, and B, are chosen, we can find the
vanishing elements between A, and B, in the rth row in
the following way. Let us illustrate the method using an
example of No = 6 with general Ng:
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Ay A, As Ay As As Bs B, BiBsBy Bs

N0 oif = o

1 0 =TI H

; 0JF=0 ! =
Hy =0 |

0 i m 0

(B.11)

(1) Let B,, the smallest among all the B,. The (A, , )
element should be unity, according to the rule of con-
structing the standard form. Then all the elements above
this (A,,r;) element in the A, th column vanish.
(2) Remove the rth row and the A, th column from H(l).
(3) Continue the same procedure N times. Then we
obtain the standard form in Eq. (B11).

The generic region of the topological sector is covered
by the generic moduli matrix with the ordering B; <
B, <:-+<By.. On the other hand the subspace with
the smallest dimension is covered by the moduli matrix
with the ordering By > B,>---> By, which has
INc(Nc — 1) zero elements by fixing of V. The other
orderings are of intermediate dimensions between these
two moduli matrices.

APPENDIX C: A PROOF OF H: =0

In our wall configurations, H' is generated by the
moduli matrix H{, but H? always vanishes: H3 = 0. In
this Appendix we give a proof of H} = 0. In the case of
nondegenerate hypermultiplet masses, this can be proved
by requiring convergence of H? at y — *oco. The proce-
dure of the proof is as follows. First, using finiteness of
the solution H! = S™!H}eM¥ at y — *oo, we will esti-
mate the order of divergence in y — *=oo for elements in
the Nc X Nc matrix S defined in Eq. (3.1). Then, we study
conditions for elements of H} imposed by convergence of
H*(= StHZe ™) at y — *oo. At this stage, most ele-
ments of Hj are proved to vanish. The remaining elements
in H3 are also proved to vanish by the orthogonality
condition for the moduli matrices H} and H3: HYHa' =
0 (3.7).

First, let us investigate conditions for elements of Hj
imposed by convergence of H> = StHZe ™ at y — +o0.
To this end, introduce the notation Oy which represents
the order of ¢4l at y — o0, By using the standard form
of H}, the order of the leading element in each row of
H}eM¥ at y — +oo is found to be

A A Ane
o4 . '
HleMy — O
0€ - O )
oj;NC (C.1)

where the order of divergence for subleading elements are
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less than the leading element in each row. Therefore, in
order that H' converges at y — o0, the orders of S~! and
ST should be

S}
N
Q

)

where we have used U(N() gauge symmetry to fix S~! as
the upper triangular matrix with real diagonal elements.
Since the order of Hie ™™ is

ngi}wy ) - F

the order of the first row of H> = STH2e™™> becomes

(C3)

H2|1—st row (@Xl (91_, (92—1 2_, T (9:\—| (9;71:) (C4)
Therefore, convergence of H? at y — oo requires
A
2 . e oo
Ho‘l—st rowi < D g 2 ) (05)
Similarly, the rth row of HS is of the form
A,
2 — -
0 r—th row_ ( I:l 0 0 ) (C())

Then, convergence of H> at y — +oo requires that H} is
in the form of

A Ay o A
B

=) (C.7)

Next, let us investigate conditions on H} imposed by
convergence at y — —oo. The moduli matrix H} in the
standard form can be transformed to the following form
by permuting its rows with a unitary matrix Vig in the
world-volume symmetry:
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Bya)Bv@) -

-.0

By we)

H} — VigH} = :
LV (C.8)

where color indices V(r) represent the permutation of 7. In
this equation, By, is the right-most nonvanishing ele-
ment in each column. The order of VigH}eMY at y — —oo
is

Bym)Bv) - Bv(ne)
o% | '
Bv%g O
v (2)
VisHyeM” =
% C.9
8 Jower. (C.9)

Convergence of H' at y — —oo requires that the orders of
VisS and (VigS)T are

of.
{3
sy = | e U
b
We) (C.10)
Ogvu)
(VisS)' = O
OE (Nc)7

where we have used U(Ng) gauge symmetry to fix
(VisS) ™! as the lower triangular matrix with real diagonal
elements. Note that Hy> do not depend on the choice of

gauge.
Since the order of H}e ™" is given by

the order of the Ncth row of H?*(= STHZe ™) =
(VISS)T(VFS)_IH(Z)e_My at y — —oo is found to be

(C.11)

2 — (O~ + - . O +
H |chth row ((QBV(NC) 1> ¥ Bywe 27 >~ Byine) NF)-
(C12)
Therefore, convergence of H> at y — —oo requires
(V) H2 (0  — )

15 0 Nc¢—th row_ EI . (013)
Similarly, the rth row of H3 is found to be

Vi) HZ 0 OBW)

( IS) 9 r—th row_ ( o D ) (014)

In summary, convergence of H> at y — —oo requires
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By By -+ Byo)
[
-l O
(Vis) ™ Hqg 0 :
O 4 (C.15)

By noting the unitarity of Vg, Hj is found to be of the
form

O . (C.16)

Combining requirements (C7) and (C16) for H(% and
noting the relation A, = B,, we find that if A, # B, for
some r all elements in A, < A < B, for each color r have
to vanish and that if A, = B, for some r, the (r,A,)
element is not required to vanish. Such remaining ele-
ments are also required to vanish by the orthogonality
condition for moduli matrices H} and H3: H\H! = 0.
The proof is completed.

In the above proof we have assumed nondegenerate
masses. If there exist some degenerate masses, H = 0
needs not hold anymore as is shown below. In this degen-
erate mass case the vacua are no longer discrete and there
exist continuous degeneracy along (quasi-)Nambu-
Goldstone directions in the moduli space of vacua. Then
H? can be nonvanishing along noncompact directions
corresponding to the quasi-Nambu-Goldstone (but not
the Nambu-Goldstone) modes at both infinities. However
this does not imply that H? includes additional moduli
parameters, because such transformation to the quasi-
Nambu-Goldstone directions does not have localized
modes.

We now show that nonvanishing components of H} can
occur only for the degenerate mass flavor, and moreover
only if all color components of H} with the same degen-
erate mass flavor combination are orthogonal to H3. The
proof given above holds until (C16) by replacing each
column (flavor) in the proof by a set of some columns
(flavors) with degenerate masses. Then A, and B, repre-
sent row vectors Hj,, and H ) (s=1---,No),
respectively, of the size M, of flavors with degenerate
masses. In the case of A, # B, all elements between A,
and B, vanish in the same way with the degenerate case.
However if A, = B, holds for some r with degenerate
masses, fl(z)(ry p,) does not vanish in general by the orthogo-

nality condition between H|} and H(2)T in contrast to the
degenerate case. Instead we have nonzero Iflg(r, B,)> Say
|Ijl(%(r,3r)|2 # 0, with satisfying Ijl(l)(s,Br) X ITI%(Tr’Br) =0
with all s-rows. They can be written in the forms of
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* Hé(l,B,) *
Hy=|0---0 Hj,z, 0--:0],
. )
*  Howes) % (C17)
* 6 *
* 6 *
H(%: O"'O (2)(7‘,3,) 0' O
0 *
0 s

However H? generated by (some) nonzero Ifl&r‘ g, does
not depend on the extra dimension y but is fixed by the
boundary condition. In addition the same row I:I(l)(,’ g, do
not generate any localized modes but are determined by
the boundary condition. We thus have found that the non-
vanishing H} components and the corresponding color
components in H} are decoupled from the rest of the
system and frozen to the vacuum value determined by
boundary conditions.

In the end we briefly make a comment on non-
normalizability of non-Abelian flavor symmetry for de-
generate masses. We can fix Ijl(%(r, p,) using the flavor sym-
metry U(M,) as ﬁ(%(r,B,) =(a,0,--+,0) with a € R.
Here « is determined by the boundary condition and it
is non-normalizable quasi-Nambu-Goldstone modes.
This breaks flavor symmetry to U(M, — 1) and f]é(& B) =
(0, %+, %) hold for all s. Other rows Hy, 5 (s # r)
transform under the unbroken flavor symmetry U(M, —
1) which is broken to the subgroup. Most of non-Abelian
modes arose from this breaking are not localized but
some with gauge symmetry transformation may be
localized.

APPENDIX D: DUALITY BETWEEN U(N¢) AND
U(N¢) AT INFINITE COUPLING

In this section, we discuss the dual relation between a
U(Nc) theory and a U(Ng — N¢ = N¢) theory with fixed
Ny appearing at the limit of infinite gauge coupling. For
simplicity, let us assume that H> = 0. Under this assump-
tion the constraint on H' (3.54) reduces to

H'H'" = cly,, (D1)

and the components of vector multiplet which is com-
posed by hypermultiplets (3.52) are,

S =c¢ 'H'MH', Wy = ic (0, H)H't. (D2)

Thus the Lagrangian (3.55) is also reduced to

125014-34



NON-ABELIAN WALLS IN SUPERSYMMETRIC GAUGE...

L87° = Tre[(D,,H)T DVH!']
— Tre[(H'tS — MH')(SH' — H'M)]
= Tre[ (0, H'TOMH' — MH'TH'M)

X (1y, — ¢ 'H'THY)] (D3)

In this form of the Lagrangian, an explicit duality rela-
tion can be easily found as follows. Let us introduce a
normalized N X Ng matrix A' orthogonal to H',

H'A'T =0,  HHA =l (D4)

These equations and the constraint (D2) make an Ng X
Ng matrix Ut = c2(H'"Y, A'Y) unitary, UUt = 1,,.
Utu = 1y, indicates the other expression of (D2) and
(D4),

H'TH' + A'TH' = cly,. (D5)

By use of this equation, the Lagrangian can be rewritten
as

L7 = ¢ Tre[ (9 H'ToMH!
= CilTrF[(aMHITaMHI

- MHYH'M)A'TH"]
- MHYH'M)H'TH"],
(Do)

where we used the orthogonality between H' and H' to
show the second line. Therefore we find that A' defined by
Eq. (D4) gives scalars of hypermultiplets in the dual
theory, where components of composite U(N¢) vector
multiplets are given by

S =c'A'MA', Wy =

ic” Yo, HYA'. (D7)

Note that there is a direct relation between >, and i,
Tre(2) + Trc(i)

which is obtained by multiplying the mass matrix M to
both sides of Eq. (D5) and taking a trace.

An explicit dual relation in terms of the wall moduli
manifolds can also be obtained. The BPS equation for H'
(2.39) is rewritten as

0= (D, +3)H!

= Trp(M), (D8)

- H'M)A'TAY,
(D9)

— H'M = ¢ (3,H'

and by right-multiplication of H', we obtain a simple
form of the BPS equation,

o,H'H'Y = H'MHA'. (D10)
By use of Eq. (D4), we obtain a dual equation for H',
a,H'H'Y = —H'MH'T. (D11)

Thus if H' satisfies the BPS Eq. (2.39), A' satisfies an
anti-BPS equation,

(8, + iW)A' =SH' — A'M, (D12)

which is also solved as
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A'=§'dle ™, S -
S§t = Ci1I-Nl(l)e72/"“1’:1(1;r

7 — _o—1 &
W, = =568 1)

with a dual moduli matrix H(l) The orthogonality (D4) is

rewritten to the orthogonality of the moduli matrices as
plt
HiH," = 0. (D14)

This relation defines a one-to-one map from a point to a
point on the Grassmann manifold.

APPENDIX E: PROOF OF (3.43): Ngps

We need a somewhat technical procedure to obtain the
number of topological sectors with BPS saturated states
(3.43),

Ng! (Ng + 1)!
Ne!Ne! (Ne + DI(Ne + D!
Let us call C) p

Ngps = (E1)

the number of sets of flavors

{A}, Ay, -+, A} and {By, By, - - -, B,_,} which satisfy
1 < A < A <---< A < A,
IA IN IN IA
(E-2)
B < By < < B,_1 < B,
ity

with the rth flavors A, B, fixed. We find that a recurrence
formula for C)) .5, and an initial value are given by

A1—1B,4—1

i PN
AcrBry

A.=r B,=

"5 Chp =1 (E3)

Note that the indices A, are summed from a color r. By
induction, we can prove the following formula for C}}

cr _UB —(r—DAJ@A -D! (B 1)
Ak e =) (A=) (B —r+ DI
(E4)

The number of BPS states Nppg is obtained by summing
over the N¢th flavor indices Ay, By, of the Cfﬁ By
¢ iNC

Ngps
< Aneer < Awg
IN INA (E5)
< BNC 1 < BNC < Np.
(S
N,
CAISC,BNC
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As a result, we find that Ngpg is given by explained in Appendix B, the moduli matrices in this
Ne N case are classified to 25 types of the matrices in the
Newoe = CNe, — CNetl ) (E6) standard form.
BPS A=ZNCBZA AB Nt LNg+1 First of all, this model contains six vacua which
are determined by matrices in the standard form, given
by

APPENDIX F: THE STANDARD FORMS FOR THE
Nc =2 AND Ny = 4 CASE

We present the matrices in the standard forms in the

case of Nc =2 and Ng = 4. Following the way that we
|

100 0 100 0 100 0

H°<12>:*/E<o 10 0)’ H°<‘3>:ﬁ<0 0 1 0>’ H°<‘4>:*/E<o 0 0 1)’
(F1)

0100 0100 0010

H0(23>:\/E<0 0 1 O>’ HO(24>:\/E<0 0 0 1)) H()<34):\/E<O 0o 0 1/

Second, there exist six elementary walls generated by matrices in the standard form

1 0 0 O 1 00 O 1 e 0 0
Ho<12<—13> = \/E<0 1 en O)’ H0<13<—14> = \/E<O 0 1 en >, H0<13«—23> = \/E<0 0 1 0>, )
1 ¢ 0 0 01 0 O 01 ¢+ 0
Ho1a24y = \/E<0 0 0o 1>, Hoo324y = \/E<O 0 1 en ) Hoa—sa = \/E<0 0 0 1)’
as well as several compressed single walls which we have omitted.
Third, the seven double wall configurations are given by
1 0 O 0 I e 0 0 I 0 €5 0
Ho(1z-14y = . Hygoensy = . Hypesy = ,
0(12—14) \/E(O 1 en er1+’2> 0(12-23) \/E<0 1 on 0) 0(12-32) \/E<O 1 0 0)

1 ¢ 0 0 1 e et 01 e+ 0
Hoy(1304y = JE(O 0 1 e ) Hoy(1432y = \/E<O 0 0 ) ) Hyze34y = \/Z<O 0 1 en )
01 0 €7
Hoyzea3y = JE(O 01 o0 ) (F3)

where the third and the last matrices contain compressed walls.
The triple wall configurations are generated by

1 e 0 0 1 0 es et
H0<12—24> = \/E<0 1 rtr > H0<12«—42> = \/E< 1 )

e’ e 0 0 0
(F4)
1 e er3+r4 0 1 e’ 0 er3+r7
H0<13_34> = \/E<0 0 1 e > H0<13«—43> = \/E<O 0 1 0 )
The second and the last matrices represent compressed triple walls.
In the end, four walls and a compressed triple wall are given by
1 e e’ +ry 0 1 0 e er5+r(J
Hyps4y = \/E(O | o entn > Hypa3y = \/E<0 1 en 0 ) (F5)

respectively.

As we explained in Sec. IVA, one can discuss relations between parameters of moduli matrices by using world-
volume symmetry and taking appropriate limit. The complex parameters rs, rq in, for instance H 43 are related to
the complex parameters ry, r,, r3, r, which parametrize generic part of the moduli as
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rs =1 +r;+log(e™ ™" — 1),
re¢ = ry — log(e™™" — 1) + i,

(F6)

with limits r, — —o0, r; — 00, and r, — r|, which can be
shown by considering a row-reduced echelon form of

Hy1234)-
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H1334y, the parameter r; in Hy343y is obtained in
the limit

r7=r2+r4+77i,

ry — — o0, ry — o0, (F7)

P. Horava and E. Witten, Nucl. Phys. B 460, 506
(1996).

N. Arkani-Hamed, S. Dimopoulos, and G. Dvali, Phys.
Lett. B 429, 263 (1998); 1. Antoniadis, N. Arkani-
Hamed, S. Dimopoulos, and G. Dvali, Phys. Lett. B
436, 257 (1998).

L. Randall and R. Sundrum, Phys. Rev. Lett. 83, 3370
(1999); Phys. Rev. Lett. 83, 4690 (1999).

E. Witten and D. Olive, Phys. Lett. B 78, 97 (1978).

M. Cvetic, E Quevedo, and S. J. Rey, Phys. Rev. Lett. 67,
1836 (1991); M. Cvetic, S. Griffies, and S.J. Rey, Nucl.
Phys. B 381, 301 (1992); M. Cvetic, S. Griffies, and H. H.
Soleng, Phys. Rev. D 48, 2613 (1993).

E. Abraham and P. K. Townsend, Phys. Lett. B 291, 85
(1992).

S. Dimopoulos and H. Georgi, Nucl. Phys. B 193, 150
(1981); N. Sakai, Z. Phys. C. 11, 153 (1981); E. Witten,
Nucl. Phys. B 188, 513 (1981); S. Dimopoulos, S. Raby,
and FE Wilczek, Phys. Rev. D 24, 1681 (1981).

V. A. Rubakov, Usp. Fiz. Nauk 171, 913 (2001) [Phys. Usp.
44, 871 ( 2001)].

G. Dvali and M. Shifman, Phys. Lett. B 396, 64 (1997);
407, 452(E) (1997).

E. K. Akhmedov, Phys. Lett. B 521, 79 (2001).

S.L. Dubovsky and V. A. Rubakov, Int. J. Mod. Phys. A
16, 4331 (2001).

M. Shifman and A. Yung, Phys. Rev. D 67, 125007 (2003).
N. Maru and N. Sakai, Prog. Theor. Phys. 111, 907
(2004).

Y. Isozumi, K. Ohashi, and N. Sakai, J. High Energy
Phys. 11 (2003) 060.

Y. Isozumi, K. Ohashi, and N. Sakai, J. High Energy
Phys. 11 (2003) 061.

M. Shifman and A. Yung, Phys. Rev. D 70, 025013
(2004).

M. Arai, M. Nitta, and N. Sakai, hep-th/0307274; in the
Proceedings of the 3rd International Symposium on
Quantum Theory and Symmetries (QTS3), Cincinnati,
2003 (to be published); in the Proceedings of the
International Conference on “Symmetry Methods in
Physics (SYM-PHYSI10)”, Yerevan, 2003 (to be pub-
lished); in the Proceedings of SUSY 2003 held at the
University of Arizona, Tucson, 2003 (to be published).
Y. Isozumi, M. Nitta, K. Ohashi, and N. Sakai, Phys. Rev.
Lett. 93, 161601 (2004).

E. Witten, Nucl. Phys. B 460, 541 (1996).

M. B. Green and M. Gutperle, Phys. Lett. B 377, 28
(1996); D. E. Diaconescu, Nucl. Phys. B 503, 220 (1997).

(32]
[33]
[34]
[35]
(36]

(37]

125014-37

A. Hanany and D. Tong, J. High Energy Phys. 07 (2003)
037; 04 (2004) 066.

M.E Atiyah, N.J. Hitchin, V.G. Drinfeld, and Yu. L
Manin, Phys. Lett. A 65, 185 (1978).

W. Nahm, Phys. Lett. B 90, 413 (1980).

J. P. Gauntlett, D. Tong, and P. K. Townsend, Phys. Rev. D
64, 025010 (2001).

D. Tong, Phys. Rev. D 66, 025013 (2002).

D. Tong, J. High Energy Phys. 04 (2003) 031.

M. Eto, S. Fujita, M. Naganuma, and N. Sakai, Phys. Rev.
D 69, 025007 (2004).

K.S. M. Lee, Phys. Rev. D 67, 045009 (2003).

K. Higashijima, M. Nitta, K. Ohta, and N. Ohta, Prog.
Theor. Phys. 98, 1165 (1997).

M. Nitta, Int. J. Mod. Phys. A 14, 2397 (1999).

B. Zumino, Phys. Lett. B 87, 203 (1979); L. Alvarez-
Gaumé and D.Z. Freedman, Commun. Math. Phys. 80,
443 (1981).

L. Alvarez-Gaumé and D. Z. Freedman, Commun. Math.
Phys. 91, 87 (1983).

P.C. Argyres, M. R. Plesser, and N. Seiberg, Nucl. Phys. B
471, 159 (1996).

I. Antoniadis and B. Pioline, Int. J. Mod. Phys. A12,
4907 (1997).

U. Lindstrom and M. Rocek, Nucl. Phys. B 222, 285
(1983).

N.J. Hitchin, A. Karlhede, U. Lindstrom, and M. Rocek,
Commun. Math. Phys. 108, 535 (1987).

M. Arai, M. Naganuma, M. Nitta, and N. Sakai, Nucl.
Phys. B 652, 35 (2003); Garden of Quanta: In Honor of
Hiroshi Ezawa, edited by J. Arafune et al (World
Scientific, Singapore, 2003), p. 299.

M. Arai, E. Ivanov, and J. Niederle, Nucl. Phys. B 680, 23
(2004).

K. Kakimoto and N. Sakai, Phys. Rev. D 68, 065005
(2003).

J. P. Gauntlett, D. Tong, and P. K. Townsend, Phys. Rev. D
63, 085001 (2001).

M. Naganuma, M. Nitta, and N. Sakai, Gravitation
Cosmol. 8, 129 (2002).

R. Portugues and P. K. Townsend, J. High Energy Phys.
04 (2002) 039.

J.P. Gauntlett, R. Portugues, D. Tong,
Townsend, Phys. Rev. D 63, 085002 (2001).
Y. Isozumi, M. Nitta, K. Ohashi, and N. Sakai, hep-th/
04051209.

K. Higashijima and M. Nitta, Prog. Theor. Phys. 103, 635
(2000).

and P K.



ISOZUMI, NITTA, OHASHI, AND SAKAI

[46]

T. L. Curtright and D.Z. Freedman, Phys. Lett. B 90, 71
(1980); L. Alvarez-Gaumé and D.Z. Freedman, Phys.
Lett. B 94, 171 (1980); M. Rocek and P. K. Townsend,
Phys. Lett. B 96, 72 (1980).
E. Calabi, Ann. Scient.
(1979).

T. Eguchi and A.J. Hanson, Phys. Lett. B 74, 24 (1978);
Ann. Phys. (N.Y.) 120, 82 (1979).

N.S. Manton, Phys. Lett. B 110, 54 (1982).

M. Eto, M. Nitta, and N. Sakai, Nucl. Phys. B 701, 247
(2004).

N. Sakai and R. Sugisaka, Phys. Rev. D 66, 045010
(2002).

Ec. Norm. Sup. 12, 269

[52]

(53]

[54]

125014-38

PHYSICAL REVIEW D 70, 125014 (2004)

T. E. Clark, M. Nitta, and T. ter Veldhuis, Phys. Rev. D 67,
085026 (2003); Phys. Rev. D 69, 047701 (2004); Phys.
Rev. D 70, 105005 (2004); hep-th/0409030; hep-th/
0409151.

M. Arai, S. Fujita, M. Naganuma, and N. Sakai, Phys.
Lett. B 556, 192 (2003); in the Proceedings of
International Seminar on Supersymmetries and
Quantum Symmetries SQS 03, Dubna, 2003 (to be
published).

T. Kugo and K. Ohashi, Prog. Theor. Phys. 105, 323
(2001); T. Fujita and K. Ohashi, Prog. Theor. Phys. 106,
221 (2001); T. Fujita, T. Kugo, and K. Ohashi, Prog.
Theor. Phys. 106, 671 (2001).



